1.Alastruey, J., Parker, K.H., Sherwin, S.J.:Arterial pulse wave haemodynamics.In:11th International Conference on Pressure Surges, vol.30, pp.401-443.Virtual PiE Led t/a BHR Group Lisbon, Portugal (2012) 2.Azer, K.:Taylor diffusion in time dependent flow.Int.J.Heat Mass Transf.48(13), 2735-2740 (2005) 3.Barnard, A., Hunt, W., Timlake, W., Varley, E.:A theory of fluid flow in compliant tubes.Biophys.J.6(6), 717-724 (1966) 4.Boileau, E., Nithiarasu, P., Blanco, P.J., Müller, L.O., Fossan, F.E., Hellevik, L.R., Donders, W.P., Huberts, W., Willemet, M., Alastruey, J.:A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling.Int.J.Numer.Methods Biomed.Eng.31(10), e02732 (2015) 5.Calamante, F., Gadian, D.G., Connelly, A.:Delay and dispersion effects in dynamic susceptibility contrast MRI:simulations using singular value decomposition.Magn.Reson.Med.44(3), 466-473 (2000) 6.Čanić, S., Kim, E.H.:Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels.Math.Methods Appl.Sci.26(14), 1161-1186 (2003) 7.Cheng, Y., Shu, C.W.:A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives.Math.Comput.77(262), 699-730 (2008) 8.Cockburn, B., Shu, C.W.:TVB Runge Kutta local projection discontinuous Galerkin finite element method for conservation laws.II.General framework.Math.Comput.52(186), 411-435 (1989) 9.D'Angelo, C.:Multiscale modelling of metabolism and transport phenomena in living tissues.Tech.rep., EPFL (2007) 10.D'Angelo, C., Quarteroni, A.:On the coupling of 1D and 3D diffusion-reaction equations:application to tissue perfusion problems.Math.Models Methods Appl.Sci.18(08), 1481-1504 (2008) 11.Dolejší, V., Feistauer, M., Hozman, J.:Analysis of semi-implicit DGFEM for nonlinear convectiondiffusion problems on nonconforming meshes.Comput.Methods Appl.Mech.Eng.196(29/30), 2813-2827 (2007) 12.Formaggia, L., Lamponi, D., Quarteroni, A.:One dimensional models for blood flow in arteries.J.Eng.Math.47(3/4), 251-276 (2003) 13.Köppl, T., Schneider, M., Pohl, U., Wohlmuth, B.:The influence of an unilateral carotid artery stenosis on brain oxygenation.Med.Eng.Phys.36(7), 905-914 (2014) 14.Köppl, T., Wohlmuth, B., Helmig, R.:Reduced one-dimensional modelling and numerical simulation for mass transport in fluids.Int.J.Numer.Methods Fluids 72(2), 135-156 (2013) 15.Marbach, S., Alim, K.:Active control of dispersion within a channel with flow and pulsating walls.Phys.Rev.Fluids 4(11), 114202 (2019) 16.Marbach, S., Alim, K., Andrew, N., Pringle, A., Brenner, M.P.:Pruning to increase Taylor dispersion in physarum polycephalum networks.Phys.Rev.Lett.117(17), 178103 (2016) 17.Masri, R., Puelz, C., Riviere, B.:A reduced model for solute transport in compliant blood vessels with arbitrary axial velocity profile.International Journal of Heat and Mass Transfer 176, 121379 (2021) 18.Mynard, J.P., Smolich, J.J.:One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation.Ann.Biomed.Eng.43(6), 1443-1460 (2015) 19.Ozisik, S., Riviere, B., Warburton, T.:On the constants in inverse inequalities in L2.Tech.rep.(2010) 20.Puelz, C., Čanić, S., Riviere, B., Rusin, C.G.:Comparison of reduced models for blood flow using Runge Kutta discontinuous Galerkin methods.Appl.Numer.Math.115, 114-141 (2017) 21.Reichold, J., Stampanoni, M., Keller, A.L., Buck, A., Jenny, P., Weber, B.:Vascular graph model to simulate the cerebral blood flow in realistic vascular networks.J.Cereb.Blood Flow Metab.29(8), 1429-1443 (2009) 22.Riviere, B.:Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations:Theory and Implementation.SIAM, Philadelphia (2008) 23.Sherwin, S., Formaggia, L., Peiro, J., Franke, V.:Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system.Int.J.Numer.Methods Fluids 43(6-7), 673-700 (2003) 24.Taylor, G.I.:Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion.Proc.R.Soc.Lond.A 225(1163), 473-477 (1954) 25.Wang, H., Shu, C.W., Zhang, Q.:Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems.Appl.Math.Comput.272, 237-258 (2016) 26.Warburton, T., Hesthaven, J.S.:On the constants in hp-finite element trace inverse inequalities.Comput.Methods Appl.Mech.Eng.192(25), 2765-2773 (2003) 27.Zhang, Q., Shu, C.W.:Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws.SIAM J.Numer.Anal.42(2), 641-666 (2004) 28.Zhang, Q., Shu, C.W.:Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws.SIAM J.Numer.Anal.44(4), 1703-1720 (2006) |