[1] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, Amsterdam (2003) [2] Barrett, J.W., Süli, E.: Existence and equilibration of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers. arXiv:1004.1432 (2010) [3] Barrett, J.W., Süli, E.: Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: finitely extensible nonlinear bead-spring chains. Math. Models Methods Appl. Sci. 21(06), 1211–1289 (2011) [4] Barrett, J.W., Süli, E.: Existence of global weak solutions to some regularized kinetic models for dilute polymers. Multiscale Model. Simul. 6(2), 506–546 (2007) [5] Barrett, J.W., Süli, E.: Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Models Methods Appl. Sci. 18(06), 935–971 (2008) [6] Barrett, J.W., Süli, E.: Existence of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers with variable density and viscosity. J. Differ. Equ. 253(12), 3610–3677 (2012) [7] Barrett, J.W., Süli, E.: Existence and equilibration of global weak solutions to kinetic models for dilute polymers II: Hookean-type models. Math. Models Methods Appl. Sci. 22(05), 1150024 (2012) [8] Barrett, J.W., Süli, E.: Finite element approximation of finitely extensible nonlinear elastic dumbbell models for dilute polymers. ESAIM Math. Model. Numer. Anal. 46(4), 949–978 (2012) [9] Barrett, J.W., Schwab, C., Süli, E.: Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15(06), 939–983 (2005) [10] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. SIAM (2002) [11] Ciarlet, P.G., Raviart, P.-A.: General Lagrange and Hermite interpolation in Rn with applications to finite element methods. Arch. Ration. Mech. Anal. 46(3), 177–199 (1972) [12] Ciavaldini, J.F.: Analyse numerique d’un problème de stefan à deux phases par une methode d’éléments finis. SIAM J. Numer. Anal. 12(3), 464–487 (1975) [13] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159. Springer, New York (2004). https://doi.org/10.1007/978-1-4757-4355-5 [14] Hashim, M.H., Harfash, A.J.: Finite element analysis of attraction-repulsion chemotaxis system. part \begin{document}$ {\rm I} $\end{document}: space convergence. Commun. Appl. Math. Comput. (2021). https://doi.org/10.1007/s42967-021-00124-7 [15] Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 24(4), 633–683 (1997) [16] Lions, J.L.: Quelques Méthodes de Résolution des Problemes aux Limites Non Linéaires. Dunod, Paris (1969) |