[1] Ahmed, M.E., Khan, M.A.: Modeling and analysis of the polluted lakes system with various fractional approaches. Chaos Solitons Fractals 134, 109720 (2020) [2] Alijani, Z., Baleanu, D., Shiri, B., Wu, G.C.: Spline collocation methods for systems of fuzzy fractional differential equations. Chaos Solitons Fractals 131, 109510 (2020) [3] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods. World Scientific, New Jersey (2012) [4] Baleanu, D., Muslih, S.I., Taş, K.: Fractional Hamiltonian analysis of higher order derivatives systems. J. Math. Phys. 47(10), 103503 (2006) [5] Bildik, N., Deniz, S.: A new fractional analysis on the polluted lakes system. Chaos Solitons Fractals 122, 17–24 (2019) [6] Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambridge (2004) [7] Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, England (2016) [8] Dadkhah, E., Shiri, B., Ghaffarzadeh, H., Baleanu, D.: Visco-elastic dampers in structural buildings and numerical solution with spline collocation methods. J. Appl. Math. Comput. 63, 29–57 (2020) [9] Dassios, I.K., Baleanu, D.: Caputo and related fractional derivatives in singular systems. Appl. Math. Comput. 337, 591–606 (2018) [10] Dassios, I., Tzounas, G., Milano, F.: Generalized fractional controller for singular systems of differential equations. J. Comput. Appl. Math. 378, 112919 (2020) [11] Diethelm, K.: The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010) [12] Einstein, A.: On the movement of small particles suspended in stationary liquids required by the molecular kinetic theory of heat. Ann. Phys. 17, 549–560 (1905) [13] Hairer, E., Nørsett, S.P., Wanner G.: Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Computational Mathematics, Heidelberg (1993) [14] Han, W., Atkinson, K.E.: Theoretical Numerical Analysis: a Functional Analysis Framework. Springer, New York (2009) [15] Kachia, K., Solís-Pérez, J.E., Gómez-Aguilar, J.F.: Chaos in a three-cell population cancer model with variable-order fractional derivative with power, exponential and Mittag-Leffler memories. Chaos Solitons Fractals 140, 110177 (2020) [16] Khalid, M., Sultana, M., Zaidi, F., Khan, F.S.: Solving polluted lakes system by using perturbation-iteration method. Int. J. Comput. Appl. 114(4), 1–7 (2015) [17] Khiabani, E.D., Ghaffarzadeh, H., Shiri, B., Katebi, J.: Spline collocation methods for seismic analysis of multiple degree of freedom systems with visco-elastic dampers using fractional models. J. Vib. Control 26(17/18), 1445–1462 (2020) [18] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) [19] Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Boca Raton (2015) [20] Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. Math. Gen. 37(31), 161–208 (2004) [21] Prakasha, D.G., Veeresha, P.: Analysis of lakes pollution model with Mittag-Leffler kernel. J. Ocean Eng. Sci. 5(4), 310–322 (2020) [22] Sheng, H., Chen, Y.: FARIMA with stable innovations model of Great Salt Lake elevation time series. Signal Process. 91(3), 553–561 (2011) [23] Shiri, B., Wu, G.C., Baleanu, D.: Collocation methods for terminal value problems of tempered fractional differential equations. Appl. Numer. Math. 156, 385–395 (2020) [24] Sousa, J.V.C., dos Santos, M.N.N., Magna, L.A., Oliveira, E.C.: Validation of a fractional model for erythrocyte sedimentation rate. Comput. Appl. Math. 37, 6903–6919 (2018) [25] Srivastava, H.M., Saad, K.M., Gómez-Aguilar, J.F., Almadiy, A.A.: Some new mathematical models of the fractional-order system of human immune against IAV infection. Math. Biosci. Eng. 17(5), 4942–4969 (2020) [26] Yüzbaşı, Ş, Şahin, N., Sezer, M.: A collocation approach to solving the model of pollution for a system of lakes. Math. Comput. Model. 55(3/4), 330–341 (2012) [27] Zaky, M.A.: Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions. J. Comput. Appl. Math. 357, 103–122 (2019) |