Communications on Applied Mathematics and Computation ›› 2022, Vol. 4 ›› Issue (3): 1011-1056.doi: 10.1007/s42967-021-00124-7
• ORIGINAL PAPER • Previous Articles Next Articles
Mohammed Homod Hashim, Akil J. Harfash
Received:
2020-10-15
Revised:
2021-01-06
Online:
2022-09-20
Published:
2022-07-04
Contact:
Akil J. Harfash,E-mail:akilharfash@gmail.com;Mohammed Homod Hashim,E-mail:Mohammedhmmod12@gmail.com
E-mail:akilharfash@gmail.com;Mohammedhmmod12@gmail.com
Supported by:
CLC Number:
Mohammed Homod Hashim, Akil J. Harfash. Finite Element Analysis of Attraction-Repulsion Chemotaxis System. Part I: Space Convergence[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 1011-1056.
[1] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, Oxford (2003) [2] Barrett, J., Blowey, J.: Finite element approximation of the Cahn-Hilliard equation with concentration dependent mobility. Math. Comput. 68(226), 487–517 (1999) [3] Barrett, J.W., Blowey, J.F.: Finite element approximation of a nonlinear cross-diffusion population model. Numerische Mathematik 98(2), 195–221 (2004) [4] Barrett, J.W., Garcke, H., Nürnberg, R.: Finite element approximation of surfactant spreading on a thin film. SIAM J. Num. Anal. 41(4), 1427–1464 (2003) [5] Barrett, J.W., Nürnberg, R.: Finite-element approximation of a nonlinear degenerate parabolic system describing bacterial pattern formation. Interfaces Free Bound. 4(3), 277–307 (2002) [6] Barrett, J.W., Nürnberg, R.: Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Num. Anal. 24(2), 323–363 (2004) [7] Bessemoulin-Chatard, M., Jüngel, A.: A finite volume scheme for a Keller-Segel model with additional cross-diffusion. IMA J. Num. Anal. 34(1), 96–122 (2014) [8] Burden, R.L., Faires, J.D.: Numerical Analysis, 8th edn. Thomson Brooks/Cole, San Francisco (2005) [9] Cazenave, T.: Semilinear Schrodinger Equations, vol. 10. American Mathematical Society, Providence (2003) [10] Chamoun, G., Saad, M., Talhouk, R.: Monotone combined edge finite volume-finite element scheme for anisotropic Keller-Segel model. Num. Methods Partial Differ. Equ. 30(3), 1030–1065 (2014) [11] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, New Orleans (2002) [12] Ciarlet, P.G., Raviart, P.A.: General Lagrange and Hermite interpolation in [13] Ciavaldini, J.F.: Analyse numerique dun problème de stefan à deux phases par une methode déléments finis. SIAM J. Num. Anal. 12(3), 464–487 (1975) [14] Epshteyn, Y., Izmirlioglu, A.: Fully discrete analysis of a discontinuous finite element method for the Keller-Segel chemotaxis model. J. Sci. Comput. 40(1/2/3), 211–256 (2009) [15] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159. Springer, Berlin (2013) [16] Filbet, F.: A finite volume scheme for the Patlak-Keller-Segel chemotaxis model. Numerische Mathematik 104(4), 457–488 (2006) [17] Foucher, F., Ibrahim, M., Saad, M.: Convergence of a positive nonlinear control volume finite element scheme for solving an anisotropic degenerate breast cancer development model. Comput. Math. Appl. 76(3), 551–578 (2018) [18] Gates, M.A., Coupe, V.M., Torres, E.M., Fricker-Gates, R.A., Dunnett, S.B.: Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. Eur. J. Neurosci. 19(4), 831–844 (2004) [19] Grün, G., Rumpf, M.: Nonnegativity preserving convergent schemes for the thin film equation. Numerische Mathematik 87(1), 113–152 (2000) [20] Guermond, A.E.J.L.: Theory and Practice of Finite Elements. Springer, New York (2004) [21] Guillén-González, F., Bellido, M.Á.R., Rueda Gómez, D.A.: Analysis of a chemo-repulsion model with nonlinear production: the continuous problem and unconditionally energy stable fully discrete schemes (2018). arXiv:1807.05078 [22] Guillén-González, F., Rodríguez-Bellido, M., Rueda-Gómez, D.A.: Asymptotic behaviour for a chemo-repulsion system with quadratic production: the continuous problem and two fully discrete numerical schemes, p. 1805 (2018). http://www.doc88.com/p-2847819971537.html [23] Guillén-González, F., Rodríguez-Bellido, M.A., Rueda-Gómez, D.A.: Unconditionally energy stable fully discrete schemes for a chemo-repulsion model. Math. Comput. 88(319), 2069–2099 (2019) [24] Guillén-González, F., Rodríguez-Bellido, M.A., Rueda-Gómez, D.A.: On the numerical behavior of a chemotaxis model with linear production term. In: Recent Advances in Pure and Applied Mathematics. Springer, pp. 61–73 (2020) [25] Guillén-González, F., Rodríguez-Bellido, M.A., Rueda-Gómez, D.A.: Study of a chemo-repulsion model with quadratic production. Part I: analysis of the continuous problem and time-discrete numerical schemes. Comput. Math. Appl. 80(5), 692–713 (2020) [26] Guillén-González, F., Rodríguez-Bellido, M.A., Rueda-Gómez, D.A.: Study of a chemo-repulsion model with quadratic production. Part II: analysis of an unconditionally energy-stable fully discrete scheme. Comput. Math. Appl. 80(5), 636–652 (2020) [27] Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 24(4), 633–683 (1997) [28] Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1/2), 183 (2009) [29] Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresber. Deutsch. Math. Verein. 105, 103–165(2003) [30] Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soci. 329(2), 819–824 (1992) [31] Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation, North Chelmsford (2012) [32] Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26(3), 399–415 (1970) [33] Lions, J.L.: Quelques Méthodes De Résolution Des Problemes Aux Limites Non Linéaires. Dunod, Paris (1969) [34] Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A.: Chemotactic signaling, microglia, and Alzheimers disease senile plaques: is there a connection? Bull. Math. Biol. 65(4), 693–730 (2003) [35] Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. ESAIM Math. Model. Num. Anal. 37(4), 617–630 (2003) [36] Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 2001(1), 970292 (2001) [37] Nochetto, R.H.: Finite element methods for parabolic free boundary problems. Adv. Num. Anal., 34–95 (1991) [38] Painter, K.J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Quart 10(4), 501–543 (2002) [39] Painter, K.J., Sherratt, J.A.: Modelling the movement of interacting cell populations. J. Theor. Biol. 225(3), 327–339 (2003) [40] Perthame, B.: Transport Equations in Biology. Springer, Berlin (2006) [41] Saito, N.: Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Commun. Pure Appl. Anal. 11(1), 339 (2012). https://doi.org/10.3934/cpaa.2012.11.339 [42] Strang, G., Fix, G.J.: An analysis of the finite element method. Prentice-Hall Series in Automatic Computation. Prentice-Hall, Inc., Englewood Cliffs, N. J. (1973) [43] Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, vol. 68. Springer, Berlin (2012) [44] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. Journal de Mathématiques Pures et Appliquées 100(5), 748–767 (2013) [45] Wloka, J.: Partial Differential Equations. Cambridge University, Cambridge (1987) [46] Zhang, J., Zhu, J., Zhang, R.: Characteristic splitting mixed finite element analysis of Keller-Segel chemotaxis models. Appl. Math. Comput. 278, 33–44 (2016) [47] Zhornitskaya, L., Bertozzi, A.L.: Positivity-preserving numerical schemes for lubrication-type equations. SIAM J. Num. Anal. 37(2), 523–555 (1999) [48] Zhou, G., Saito, N.: Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis. Numerische Mathematik 135(1), 265–311 (2017) |
[1] | Xiaozhou Li. How to Design a Generic Accuracy-Enhancing Filter for Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 759-782. |
[2] | Ohannes A. Karakashian, Michael M. Wise. A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 823-854. |
[3] | Mohammed Homod Hashim, Akil J. Harfash. Finite Element Analysis of Attraction-Repulsion Chemotaxis System. Part II: Time Convergence, Error Analysis and Numerical Results [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 1057-1104. |
[4] | Jennifer K. Ryan. Capitalizing on Superconvergence for More Accurate Multi-Resolution Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 417-436. |
[5] | Mahboub Baccouch. Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second-Order Elliptic Problems on Cartesian Grids [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 437-476. |
[6] | Gang Chen, Bernardo Cockburn, John R. Singler, Yangwen Zhang. Superconvergent Interpolatory HDG Methods for Reaction Difusion Equations II: HHO-Inspired Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 477-499. |
[7] | Yuqing Miao, Jue Yan, Xinghui Zhong. Superconvergence Study of the Direct Discontinuous Galerkin Method and Its Variations for Difusion Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 180-204. |
[8] | Yuan Xu, Qiang Zhang. Superconvergence Analysis of the Runge-Kutta Discontinuous Galerkin Method with Upwind-Biased Numerical Flux for Two-Dimensional Linear Hyperbolic Equation [J]. Communications on Applied Mathematics and Computation, 2022, 4(1): 319-352. |
[9] | Qingqing Wu, Zhongshu Wu, Xiaoyan Zeng. A Jacobi Spectral Collocation Method for Solving Fractional Integro-Differential Equations [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 509-526. |
[10] | Ahmed Al-Taweel, Yinlin Dong, Saqib Hussain, Xiaoshen Wang. A Weak Galerkin Harmonic Finite Element Method for Laplace Equation [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 527-544. |
[11] | Wenhui Guan, Xuenian Cao. A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation [J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 41-59. |
[12] | Mehdi Samiee, Ehsan Kharazmi, Mark M. Meerschaert, Mohsen Zayernouri. A Unified Petrov–Galerkin Spectral Method and Fast Solver for Distributed-Order Partial Differential Equations [J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 61-90. |
[13] | Ming Cui, Xiu Ye, Shangyou Zhang. A Modified Weak Galerkin Finite Element Method for the Biharmonic Equation on Polytopal Meshes [J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 91-105. |
[14] | Xiao, Xia Guo, Hong, Xiao Wu. Two Structure-Preserving-Doubling Like Algorithms to Solve the Positive Definite Solution of the Equation X - AHX-1A = Q [J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 123-135. |
[15] | Fang Chen, Cun, Qiang Miao, Galina V. Muratova. On Convergence of MRQI and IMRQI Methods for Hermitian Eigenvalue Problems [J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 189-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||