[1] Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198(1), 106–130 (2004) [2] Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27, 5–40 (2006) [3] Appelö, D., Hagstrom, T.: A new discontinuous Galerkin formulation for wave equations in second order form. SIAM J. Numer. Anal. 53(6), 2705–2726 (2015) [4] Appelö, D., Hagstrom, T.: An energy-based discontinuous Galerkin discretization of the elastic wave equation in second order form. Comput. Methods Appl. Mech. Eng. 338, 362–391 (2018) [5] Appelö, D., Hagstrom, T., Wang, Q., Zhang, L.: An energy-based discontinuous Galerkin method for semilinear wave equations. J. Comput. Phys. 418, 109608 (2020) [6] Banks, J.W., Buckner, B.B., Hagstrom, T., Juhnke, K.: Discontinuous Galerkin Galerkin differences for the wave equation in second-order form. SIAM J. Sci. Comput. 43(2), A1497–A1526 (2021) [7] Banks, J.W., Hagstrom, T.: On Galerkin difference methods. J. Comput. Phys. 313, 310–327 (2016) [8] Banks, J.W., Henshaw, W.D.: Upwind schemes for the wave equation in second-order form. J. Comput. Phys. 231(17), 5854–5889 (2012). . Banks, J.W., Henshaw, W.D.: Upwind schemes for the wave equation in second-order form. J. Comput. Phys. 231(17), 5854–5889 (2012). https://doi.org/10.1016/j.jcp.2012.05.012. http://www.sciencedirect.com/science/article/pii/S0021999112002367 [9] Chan, J., Hewett, R.J., Warburton, T.: Weight-adjusted discontinuous Galerkin methods: curvilinear meshes. SIAM J. Sci. Comput. 39(6), A2395–A2421 (2017) [10] Chan, J., Hewett, R.J., Warburton, T.: Weight-adjusted discontinuous Galerkin methods: wave propagation in heterogeneous media. SIAM J. Sci. Comput. 39(6), A2935–A2961 (2017) [11] Chou, C.S., Shu, C.-W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014). . Chou, C.S., Shu, C.-W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014). https://doi.org/10.1016/j.jcp.2014.04.009. http://www.sciencedirect.com/science/article/pii/S0021999114002721 [12] Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006). http://www.jstor.org/stable/40232901 [13] Hagstrom, T., Banks, J.W., Buckner, B.B., Juhnke, K.: Discontinuous Galerkin difference methods for symmetric hyperbolic systems. J. Sci. Comput. 81, 1509–1526 (2019) [14] Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Science & Business Media, Berlin (2007) [15] Hu, F.Q., Hussaini, M., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151(2), 921–946 (1999) [16] Jones, M., Plassmann, P.: Algorithm 740: Fortran subroutines to compute improved incomplete Cholesky factorizations. ACM Trans. Math. Soft. (TOMS) 21, 5–17 (1995) [17] Kozdon, J., Wilcox, L., Hagstrom, T., Banks, J.: Robust approaches to handling complex geometries with Galerkin difference methods. J. Comput. Phys. 392, 483–510 (2019) [18] Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6(1), 185–199 (1964) [19] Mattsson, K.: Summation by parts operators for finite difference approximations of second-derivatives with variable coefficient. J. Sci. Comput. 51, 650–682 (2012) [20] Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 503–540 (2004) [21] Moura, R.C., Sherwin, S., Peiró, J.: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695–710 (2015) [22] Riviere, B., Wheeler, M.: Discontinuous finite element methods for acoustic and elastic wave problems. Part i: semidiscrete error estimates. Contemp. Math. 329, 271–282 (2003) [23] Schmitz, P.G., Ying, L.: A fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matrices. J. Comput. Phys. 258, 227–245 (2014) [24] Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014) [25] Zhang, L., Hagstrom, T., Appelö, D.: An energy-based discontinuous Galerkin method for the wave equation with advection. SIAM J. Numer. Anal. 57(5), 2469–2492 (2019) |