Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (3): 885-909.doi: 10.1007/s42967-024-00413-x
Previous Articles Next Articles
Guangyao Zhu1, Yan Jiang1, Mengping Zhang1
Received:
2023-11-30
Revised:
2024-03-30
Accepted:
2024-04-14
Online:
2025-09-20
Published:
2025-05-23
Supported by:
CLC Number:
Guangyao Zhu, Yan Jiang, Mengping Zhang. Inverse Lax-Wendroff Boundary Treatment for Solving Conservation Laws with Finite Volume Methods[J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 885-909.
1. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997) 2. Berger, M.J., Helzel, C., LeVeque, R.J.: H-box methods for the approximation of hyperbolic conservation laws on irregular grids. SIAM J. Numer. Anal. 41, 893–918 (2003) 3. Boularas, A., Clain, S., Baudoin, F.: A sixth-order finite volume method for diffusion problem with curved boundaries. Appl. Math. Modell. 42, 401–422 (2017) 4. Carpenter, M.H., Gottlieb, D., Abarbanel, S., Don, W.-S.: The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error. SIAM J. Sci. Comput. 16, 1241–1252 (1995) 5. Cheng, Z., Liu, S., Jiang, Y., Lu, J., Zhang, M., Zhang, S.: A high order boundary scheme to simulate a complex moving rigid body under the impingement of a shock wave. Appl. Math. Mech. -Eng. Ed.42, 841–854 (2021) 6. Costa, R., Clain, S.L., Loubère, R., Machado, G.J.: Very high-order accurate finite volume scheme on curved boundaries for the two-dimensional steady-state convection-diffusion equation with Dirichlet condition. Appl. Math. Modell. 54, 752–767 (2018) 7. Costa, R., Clain, S.L., Machado, G.J., Nóbrega, J.M.: Very high-order accurate finite volume scheme for the steady-state incompressible Navier-Stokes equations with polygonal meshes on arbitrary curved boundaries. Comput Methods Appl. Mech. Eng. 396, 115064 (2022) 8. Costa, R., Nóbrega, J.M., Clain, S.L., Machado, G.J.: Efficient very high-order accurate polyhedral mesh finite volume scheme for 3D conjugate heat transfer problems in curved domains. J. Comput. Phys. 445, 110604 (2021) 9. Ding, S., Shu, C.-W., Zhang, M.: On the conservation of finite difference WENO schemes in nonrectangular domains using the inverse Lax-Wendroff boundary treatments. J. Comput. Phys. 415, 109516 (2020) 10. Filbet, F., Yang, C.: An inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models. J. Comput. Phys. 245, 43–61 (2013) 11. Gustafsson, B., Kreiss, H.-O., Sundström, A.: Stability theory of difference approximations for mixed initial boundary value problem. II. Math. Comput. 26, 649–686 (1972) 12. Helzel, C., Berger, M.J., LeVeque, R.J.: A high-resolution rotated grid method for conservation laws with embedded geometries. SIAM J. Sci. Comput. 26, 785–809 (2005) 13. Krivodonova, L., Berger, M.: High-order accurate implementation of solid wall boundary conditions in curved geometries. J. Comput. Phys. 211, 492–512 (2006) 14. Li, T., Lu, J., Shu, C.-W.: Stability analysis of inverse Lax-Wendroff boundary treatment of high order compact difference schemes for parabolic equations. J. Comput. Appl. Math. 400, 113711 (2021) 15. Li, T., Shu, C.-W., Zhang, M.: Stability analysis of the inverse Lax-Wendroff boundary treatment for high order upwind-biased finite difference schemes. J. Comput. Appl. Math. 299, 140–158 (2016) 16. Li, T., Shu, C.-W., Zhang, M.: Stability analysis of the inverse Lax-Wendroff boundary treatment for high order central difference schemes for diffusion equations. J. Sci. Comput. 70, 576–607 (2017) 17. Liu, S., Cheng, Z., Jiang, Y., Zhang, M., Zhang, S.: Numerical simulation of a complex moving rigid body under the impingement of a shock wave in 3D. Adv. Aerodyn. 4, 8 (2022) 18. Liu, S., Jiang, Y., Shu, C.-W., Zhang, M., Zhang, S.: A high order moving boundary treatment for convection-diffusion equations. J. Comput. Phys. 473, 111752 (2022) 19. Liu, S., Li, T., Cheng, Z., Jiang, Y., Shu, C.-W., Zhang, M.: A new type of simplified inverse Lax-Wendroff boundary treatment I: hyperbolic conservation laws. arXiv:2402.10152 (2024) 20. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially nonoscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) 21. Lu, J., Fang, J., Tan, S., Shu, C.-W., Zhang, M.: Inverse Lax-Wendroff procedure for numerical boundary conditions of convection-diffusion equations. J. Comput. Phys. 317, 276–300 (2016) 22. Lu, J., Shu, C.-W., Tan, S., Zhang, M.: An inverse Lax-Wendroff procedure for hyperbolic conservation laws with changing wind direction on the boundary. J. Comput. Phys. 426, 109940 (2021) 23. Mavriplis, D.: Results from the 3rd drag prediction workshop using the NSU3D unstructured mesh solver. In: 45th AIAA Aerospace Sciences Meeting and Exhibit. AIAA 2007–256 (2007) 24. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252 (1977) 25. Tan, S., Shu, C.-W.: Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput. Phys. 229, 8144–8166 (2010) 26. Tan, S., Shu, C.-W.: A high order moving boundary treatment for compressible inviscid flows. J. Comput. Phys. 230, 6023–6036 (2011) 27. Tan, S., Wang, C., Shu, C.-W., Ning, J.: Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws. J. Comput. Phys. 231, 2510–2527 (2012) 28. Vilar, F.: Development and stability analysis of the inverse Lax-Wendroff boundary treatment for central compact schemes. ESAIM Math. Modell. Numer. Anal. 49, 39–67 (2015) 29. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018) |
[1] | Lei Yang, Shun Li, Yan Jiang, Chi-Wang Shu, Mengping Zhang. Inverse Lax-Wendroff Boundary Treatment of Discontinuous Galerkin Method for 1D Conservation Laws [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 796-826. |
[2] | Wasilij Barsukow, Jonas P. Berberich. A Well-Balanced Active Flux Method for the Shallow Water Equations with Wetting and Drying [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2385-2430. |
[3] | Mária Lukáčová-Medvid'ová, Yuhuan Yuan. Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2215-2238. |
[4] | Matania Ben-Artzi, Jiequan Li. Hyperbolic Conservation Laws, Integral Balance Laws and Regularity of Fluxes [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2048-2063. |
[5] | Feng Zheng, Jianxian Qiu. Dimension by Dimension Finite Volume HWENO Method for Hyperbolic Conservation Laws [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 605-624. |
[6] | Xuan Ren, Jianhu Feng, Supei Zheng, Xiaohan Cheng, Yang Li. On High-Resolution Entropy-Consistent Flux with Slope Limiter for Hyperbolic Conservation Laws [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1616-1643. |
[7] | Matania Ben-Artzi, Jiequan Li. Regularity of Fluxes in Nonlinear Hyperbolic Balance Laws [J]. Communications on Applied Mathematics and Computation, 2023, 5(3): 1289-1298. |
[8] | J. C. González-Aguirre, J. A. González-Vázquez, J. Alavez-Ramírez, R. Silva, M. E. Vázquez-Cendón. Numerical Simulation of Bed Load and Suspended Load Sediment Transport Using Well-Balanced Numerical Schemes [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 885-922. |
[9] | Johannes Markert, Gregor Gassner, Stefanie Walch. A Sub-element Adaptive Shock Capturing Approach for Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 679-721. |
[10] | R. Abgrall, J. Nordström, P. Öffner, S. Tokareva. Analysis of the SBP-SAT Stabilization for Finite Element Methods Part II: Entropy Stability [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 573-595. |
[11] | Xucheng Meng, Yaguang Gu, Guanghui Hu. A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries [J]. Communications on Applied Mathematics and Computation, 2023, 5(1): 315-342. |
[12] | Zheng Sun, Chi-Wang Shu. Enforcing Strong Stability of Explicit Runge-Kutta Methods with Superviscosity [J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 671-700. |
[13] | F. L. Romeo, M. Dumbser, M. Tavelli. A Novel Staggered Semi-implicit Space-Time Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations [J]. Communications on Applied Mathematics and Computation, 2021, 3(4): 607-647. |
[14] | Jun-Feng Yin, Yi-Shu Du. A Class of Preconditioners Based on Positive-Definite Operator Splitting Iteration Methods for Variable-Coefficient Space-Fractional Diffusion Equations [J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 157-176. |
[15] | Zachary Grant, Sigal Gottlieb, David C. Seal. A Strong Stability Preserving Analysis for Explicit Multistage Two-Derivative Time-Stepping Schemes Based on Taylor Series Conditions [J]. Communications on Applied Mathematics and Computation, 2019, 1(1): 21-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||