Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (6): 2189-2242.doi: 10.1007/s42967-023-00360-z
• ORIGINAL PAPERS • Previous Articles Next Articles
Dinshaw S. Balsara1,2, Deepak Bhoriya1, Chi-Wang Shu3, Harish Kumar4
Received:2023-06-23
Revised:2023-11-05
Published:2025-12-24
Contact:
Dinshaw S. Balsara, E-mail:dbalsara@nd.edu
E-mail:dbalsara@nd.edu
Supported by:CLC Number:
Dinshaw S. Balsara, Deepak Bhoriya, Chi-Wang Shu, Harish Kumar. Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Conservation Laws[J]. Communications on Applied Mathematics and Computation, 2025, 7(6): 2189-2242.
| [1] Anile, A.M.: Relativistic Fluids and Magneto-Fluids: with Applications in Astrophysics and Plasma Physics. Cambridge University Press, Cambridge (1989) [2] Arbogast, T., Huang, C.-S., Zhao, X.: Accuracy of WENO and adaptive order WENO reconstructions for solving conservation laws. SIAM J. Numer. Anal. 56(3), 1818–1847 (2018) [3] Balsara, D.S.: Total variation diminishing algorithm for adiabatic and isothermal magnetohydrodynamics. Astrophys. J. Suppl. 116, 133–153 (1998) [4] Balsara, D.S.: Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. 151(1), 149–184 (2004) [5] Balsara, D.S.: Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 7504–7517 (2012) [6] Balsara, D.S., Bhoriya, D., Shu, C.-W., Kumar, H.: Efficient finite difference WENO scheme for hyperbolic systems with non-conservative products. Commun. Appl. Math. Comput. (2023). https://doi.org/10.1007/s42967-023-00275-9 [7] Balsara, D.S., Garain, S., Florinski, V., Boscheri, W.: An efficient class of WENO schemes with adaptive order for unstructured meshes. J. Comput. Phys. 404, 109062 (2020) [8] Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016) [9] Balsara, D.S., Kim, J.: A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector. J. Comput. Phys. 312, 357–384 (2016) [10] Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.-D.: Efficient, high-accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228, 2480 (2009) [11] Balsara, D.S., Samantaray, S., Subramanian, S.: Efficient WENO-based prolongation strategies for divergence-preserving vector fields. Commun. Appl. Math. Comput. 5(1), 428–484 (2022) [12] Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000) [13] Berberich, J.P., Käppeli, R., Chandrashekar, P., Klingenberg, C.: High order discretely well-balanced methods for arbitrary hydrostatic atmospheres. Commun. Comput. Phys. 30(3), 666–708 (2021) [14] Bhoriya, D., Kumar, H.: Entropy-stable schemes for relativistic hydrodynamics equations. Z. Angew. Math. Phys. 71, 1–29 (2020) [15] Biswas, B., Kumar, H., Bhoriya, D.: Entropy stable discontinuous Galerkin schemes for the special relativistic hydrodynamics equations. Comput. Math. Appl. 112, 55–75 (2022) [16] Biswas, B., Kumar, H., Yadav, A.: Entropy stable discontinuous Galerkin methods for ten-moment Gaussian closure equations. J. Comput. Phys. 431, 110148 (2021) [17] Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3101–3211 (2008) [18] Boscheri, W., Balsara, D.S.: High order direct arbitrary-Lagrangian-Eulerian (ALE) $ {P_N}{P_M} $ schemes on unstructured meshes. J. Comput. Phys. 398, 108899 (2019) [19] Carlini, E., Ferretti, R., Russo, G.: A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 27, 1071–1091 (2005) [20] Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011) [21] Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54(1), 174–201 (1984) [22] Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67(3), 1219–1246 (2016) [23] Duan, J.M., Tang, H.Z.: High-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamics. Adv. Appl. Math. Mech. 12(1), 1–29 (2019) [24] Dumbser, M., Balsara, D.S.: A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304, 275–319 (2016) [25] Gao, Z., Fang, L.-L., Wang, B.-S., Wang, Y., Don, W.S.: Seventh and ninth orders characteristic-wise alternative WENO finite difference schemes for hyperbolic conservation laws. Comput. Fluids 202, 104519 (2020) [26] Gerolymos, G.A., Sénéchal, D., Vallet, I.: Very high order WENO schemes. J. Comput. Phys. 228, 8481–8524 (2009) [27] Grosheintz-Laval, L., Käppeli, R.: Well-balanced finite volume schemes for nearly steady adiabatic flows. J. Comput. Phys. 423, 109805 (2020) [28] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987) [29] He, P., Tang, H.: An adaptive moving mesh method for two-dimensional relativistic hydrodynamics. Commun. Comput. Phys. 11(1), 114–146 (2012) [30] Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2006) [31] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) [32] Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35(2), A1137–A1160 (2013) [33] Jiang, Y., Shu, C.-W., Zhang, M.: Free-stream preserving finite-difference schemes on curvilinear meshes. Methods Appl. Anal. 21(1), 001–030 (2014) [34] Käppeli, R.: Well-balanced methods for computational astrophysics. Living Rev. Comput. Astrophys. 8(2), 1–88 (2022) [35] Käppeli, R., Mishra, S.: Well-balanced schemes for the Euler equations with gravitation. J. Comput. Phys. 259, 199–219 (2014) [36] Kumar, R., Chandrashekar, P.: Simple smoothness indicator and multi-level adaptive order WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 375, 1059–1090 (2018) [37] Kumar, R., Chandrashekar, P.: Efficient seventh order WENO schemes of adaptive order for hyperbolic conservation laws. Comput. Fluids 190, 49–76 (2019) [38] Kupka, F., Happenhofer, N., Higueras, I., Koch, O.: Total-variation-diminishing implicit-explicit Runge-Kutta methods for the simulation of double-diffusive convection in astrophysics. J. Comput. Phys. 231, 3561–3586 (2012) [39] Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7(1), 159–193 (1954) [40] Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22, 656–672 (2000) [41] Ling, D., Duan, J.M., Tang, H.Z.: Physical-constraints-preserving Lagrangian finite volume schemes for one- and two-dimensional special relativistic hydrodynamics. J. Comput. Phys. 396, 507–543 (2019) [42] Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25(3), 995–1017 (2003) [43] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) [44] Martí, M.J., Müller, E.: Numerical hydrodynamics in special relativity. Living Rev. Relat. 6(1), 7 (2003) [45] Meena, A.K., Kumar, H., Chandrashekar, P.: Positivity-preserving high-order discontinuous Galerkin schemes for ten-moment Gaussian closure equations. J. Comput. Phys. 339, 370–395 (2017) [46] Merriman, B.: Understanding the Shu-Osher conservative finite difference form. J. Sci. Comput. 19(1/2/3), 309 (2003) [47] Mignone, A., Bodo, G.: An HLLC Riemann solver for relativistic flows I. Hydrodynamics. Mon. Notices R. Astron. Soc. 364(1), 126–136 (2005) [48] Pao, S.P., Salas, M.D.: A numerical study of two-dimensional shock-vortex interaction. In: 14th Fluid and Plasma Dynamics Conference, AIAA 81-1205 (1981) [49] Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129 (2005) [50] Sebastian, K., Shu, C.-W.: Multidomain WENO finite difference method with interpolation at sub-domain interfaces. J. Sci. Comput. 19, 405–438 (2003) [51] Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66(2), 692–724 (2016) [52] Sen, C., Kumar, H.: Entropy stable schemes for ten-moment Gaussian closure equations. J. Sci. Comput. 75(2), 1128–1155 (2018) [53] Shu, C.-W.: High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009) [54] Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer. 29, 701–762 (2020) [55] Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988) [56] Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989) [57] Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978) [58] Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time-stepping schemes. SIAM J. Numer. Anal. 40, 469–491 (2002) [59] Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods. Math. Comput. Simul. 62, 125–135 (2003) [60] Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984) [61] Zheng, F., Shu, C.-W., Qiu, J.: A high order conservative finite difference scheme for compressible two-medium flows. J. Comput. Phys. 445, 110597 (2021) [62] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016) [63] Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018) |
| [1] | Dinshaw S. Balsara, Deepak Bhoriya, Chi-Wang Shu, Harish Kumar. Efficient Alternative Finite Difference WENO Schemes for Hyperbolic Systems with Non-conservative Products [J]. Communications on Applied Mathematics and Computation, 2025, 7(6): 2289-2338. |
| [2] | Guangyao Zhu, Yan Jiang, Mengping Zhang. Inverse Lax-Wendroff Boundary Treatment for Solving Conservation Laws with Finite Volume Methods [J]. Communications on Applied Mathematics and Computation, 2025, 7(3): 885-909. |
| [3] | Lei Yang, Shun Li, Yan Jiang, Chi-Wang Shu, Mengping Zhang. Inverse Lax-Wendroff Boundary Treatment of Discontinuous Galerkin Method for 1D Conservation Laws [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 796-826. |
| [4] | Matania Ben-Artzi, Jiequan Li. Hyperbolic Conservation Laws, Integral Balance Laws and Regularity of Fluxes [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2048-2063. |
| [5] | Michael Herty, Niklas Kolbe, Siegfried Müller. A Central Scheme for Two Coupled Hyperbolic Systems [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2093-2118. |
| [6] | Sethupathy Subramanian, Dinshaw S. Balsara, Deepak Bhoriya, Harish Kumar. Techniques, Tricks, and Algorithms for Efficient GPU-Based Processing of Higher Order Hyperbolic PDEs [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2336-2384. |
| [7] | Lorenzo Micalizzi, Davide Torlo. A New Efficient Explicit Deferred Correction Framework: Analysis and Applications to Hyperbolic PDEs and Adaptivity [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1629-1664. |
| [8] | Dinshaw S. Balsara, Deepak Bhoriya, Chi-Wang Shu, Harish Kumar. Efficient Finite Difference WENO Scheme for Hyperbolic Systems with Non-conservative Products [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 907-962. |
| [9] | Feng Zheng, Jianxian Qiu. Dimension by Dimension Finite Volume HWENO Method for Hyperbolic Conservation Laws [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 605-624. |
| [10] | John M. Holmes, Barbara Lee Keyfitz. Nonuniform Dependence on the Initial Data for Solutions of Conservation Laws [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 489-500. |
| [11] | Xuan Ren, Jianhu Feng, Supei Zheng, Xiaohan Cheng, Yang Li. On High-Resolution Entropy-Consistent Flux with Slope Limiter for Hyperbolic Conservation Laws [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1616-1643. |
| [12] | Matania Ben-Artzi, Jiequan Li. Regularity of Fluxes in Nonlinear Hyperbolic Balance Laws [J]. Communications on Applied Mathematics and Computation, 2023, 5(3): 1289-1298. |
| [13] | R. Abgrall, J. Nordström, P. Öffner, S. Tokareva. Analysis of the SBP-SAT Stabilization for Finite Element Methods Part II: Entropy Stability [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 573-595. |
| [14] | Dinshaw S. Balsara, Saurav Samantaray, Sethupathy Subramanian. Efficient WENO-Based Prolongation Strategies for Divergence-Preserving Vector Fields [J]. Communications on Applied Mathematics and Computation, 2023, 5(1): 428-484. |
| [15] | Dinshaw S. Balsara, Roger Käppeli, Walter Boscheri, Michael Dumbser. Curl Constraint-Preserving Reconstruction and the Guidance it Gives for Mimetic Scheme Design [J]. Communications on Applied Mathematics and Computation, 2023, 5(1): 235-294. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||