1. Alic, D., Bona, C., Bona-Casas, C.: Towards a gauge-polyvalent numerical relativity code. Phys. Rev. D 79(4), 044026 (2009) 2. Alic, D., Bona-Casas, C., Bona, C., Rezzolla, L., Palenzuela, C.: Conformal and covariant formulation of the Z4 system with constraint-violation damping. Phys. Rev. D 85(6), 064040 (2012) 3. Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174(2), 614–648 (2001) 4. Balsara, D.S.: Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. 151(1), 149–184 (2004) 5. Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228, 5040–5056 (2009) 6. Balsara, D.S.: Multidimensional extension of the HLLE Riemann solver; application to Euler and magnetohydrodynamical flows. J. Comput. Phys. 229, 1970–1993 (2010) 7. Balsara, D.S.: A two-dimensional HLLC Riemann solver with applications to Euler and MHD flows. J. Comput. Phys. 231, 7476–7503 (2012) 8. Balsara, D.S.: Multidimensional Riemann problem with self-similar internal structure. Part I–Application to hyperbolic conservation laws on structured meshes. J. Comput. Phys. 277, 163–200 (2014) 9. Balsara, D.S.: Three dimensional HLL Riemann solver for structured meshes; application to Euler and MHD flow. J. Comput. Phys. 295, 1–23 (2015) 10. Balsara, D.S., Amano, T., Garain, S., Kim, J.: High order accuracy divergence-free scheme for the electrodynamics of relativistic plasmas with multidimensional Riemann solvers. J. Comput. Phys. 318, 169–200 (2016) 11. Balsara, D.S., Dumbser, M.: Multidimensional Riemann problem with self-similar internal structure. Part II–Application to hyperbolic conservation laws on unstructured meshes. J. Comput. Phys. 287, 269–292 (2015) 12. Balsara, D.S., Dumbser, M.: Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. J. Comput. Phys. 299, 687–715 (2015) 13. Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLL and HLLC Riemann solvers for unstructured meshes -With application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014) 14. Balsara, D.S., Florinski, V., Garain, S., Subramanyan, S., Gurski, K.F.: Efficient, divergence-free high order MHD on 3D spherical meshes with optimal geodesic mapping. Mon. Not. R. Astron. Soc. 487, 1283 (2019) 15. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016) 16. Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally curl-free RKDG and PNPM schemes for PDEs with a curl-involution constraint (2020, in preparation) 17. Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally divergence-free RKDG and PNPM schemes for the induction equation using multidimensional Riemann solvers. J. Comput. Phys. 336, 104–127 (2017) 18. Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally constraint-preserving DGTD schemes for the Maxwell equations using multidimensional Riemann solvers. J. Comput. Phys. 376, 1108–1137 (2019) 19. Balsara, D.S., Kumar, R., Chandrashekar, P.: Globally divergence-free DG schemes for ideal compressible MHD at all orders. Commun. Appl. Math. Comput. Sci. 16(1), 59–98 (2021) 20. Balsara, D.S., Nkonga, B.: Formulating multidimensional Riemann solvers in similarity variables—part III: a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346, 25–48 (2017) 21. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000) 22. Balsara, D.S., Simpson, J.J.: Making a synthesis of FDTD and DGTD schemes for computational electromagnetics. IEEE Trans. 5, 99–118 (2020) 23. Balsara, D.S., Spicer, D.: A staggered mesh algorithm using higher order Godunov fluxes to ensure solenoidal magnetic fields in MHD simulations. J. Comput. Phys. 149, 270–292 (1999) 24. Balsara, D.S., Taflove, A., Garain, S., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution–Part I, second-order FVTD schemes. J. Comput. Phys. 349, 604–635 (2017) 25. Balsara, D.S., Taflove, A., Garain, S., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution–Part II, higher-order FVTD schemes. J. Comput. Phys. 354, 613–645 (2018) 26. Balsara, D.S., Vides, J., Gurski, K., Nkonga, B., Dumbser, M., Garain, S., Audit, E.: A two-dimensional Riemann solver with self-similar sub-structure—alternative formulation based on least squares projection. J. Comput. Phys. 304, 138–161 (2016) 27. Boscheri, W., Dumbser, M., Ioriatti, M., Peshkov, I., Romenski, E.: A structure-preserving staggered semi-implicit finite volume scheme for continuum mechanics. J. Comput. Phys. 424, 109866 (2020) 28. Brown, J.D., Diener, P., Field, S.E., Hesthaven, J.S., Herrmann, F., Mroue, A.H., Sarbach, O., Schnetter, E., Tiglio, M., Wagman, M.: Numerical simulations with a first-order BSSN formulation of Einstein’s field equations. Phys. Rev. D 85(8), 084004 (2012) 29. Dhaouadi, F., Favrie, N., Gavrilyuk, S.: Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation. Stud. Appl. Math. 142(3), 336–358 (2018) 30. Dumbser, M., Chiocchetti, S., Peshkov, I.: On numerical methods for hyperbolic PDE with curl involutions. In: Demidenko, G.V., et al. (eds) Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov’s Legacy. Springer (2020) 31. Dumbser, M., Fambri, F., Gaburro, E., Reinarz, A.: On GLM curl cleaning for a first order reduction of the CCZ4 formulation of the Einstein field equations. J. Comput. Phys. 404, 109088 (2020) 32. Dumbser, M., Guercilena, F., Köppel, S., Rezzolla, L., Zanotti, O.: A strongly hyperbolic first-order CCZ4 formulation of the Einstein equations and its solution with discontinuous Galerkin schemes. Phys. Rev. D 97, 084053 (2018) 33. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016) 34. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics. J. Comput. Phys. 348, 298–342 (2017) 35. Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139(3), 521–523 (1961) 36. Godunov, S.K., Romenski, E.I.: Nonstationary equations of the nonlinear theory of elasticity in Euler coordinates. J. Appl. Mech. Tech. Phys. 13, 868–885 (1972) 37. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving higher order time discretization methods. SIAM Rev. 43(1), 89–112 (2001) 38. Hazra, A., Chandrashekar, P., Balsara, D.S.: Globally constraint-preserving FR/DG scheme for Maxwell’s equations at all orders. J. Comput. Phys. 394, 298–328 (2019) 39. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) 40. Kolgan, V.P.: Application of the principle of minimizing the derivative to the construction of finitedifference schemes for computing discontinuous solutions of gas dynamics. Sci. Notes TsAGI 3, 68–77 (1972) 41. van Leer, B.: Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys. 23, 276–299 (1977) 42. van Leer, B.: Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101 (1979) 43. Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: L2 stability analysis of the central discontinuous Galerkin method and comparison between the central and regular discontinuous Galerkin methods. Math. Model. Numer. Anal. 42, 593–607 (2008) 44. Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Continuum Mech. Thermodyn. 30(6), 1343–1378 (2018) 45. Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Continuum Mech. Thermodyn. 28, 85–104 (2016) 46. Romenski, E.I.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model. 28(10), 115–130 (1998) 47. Romenski, E., Drikakis, D., Toro, E.F.: Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42, 68–95 (2010) 48. Schmidmayer, K., Petitpas, F., Daniel, E., Favrie, N., Gavrilyuk, S.: A model and numerical method for compressible flows with capillary effects. J. Comput. Phys. 334, 468–496 (2017) 49. Shu, C.-W.: Total variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988) 50. Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988) 51. Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989) 52. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time-stepping schemes. SIAM J. Numer. Anal. 40, 469–491 (2002) 53. Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods. Math. Comput. Simul. 62, 125–135 (2003) 54. Xu, Z., Balsara, D.S., Du, H.: Divergence-free WENO reconstruction-based finite volume scheme for ideal MHD equations on triangular meshes. Commun. Comput. Phys. 19(04), 841–880 (2016) 55. Zhang, M., Shu, C.-W.: An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids 34, 581–592 (2005) |