[1] Andrianov, N., Warnecke, G.: The Riemann problem for the Baer-Nunziato two-phase flow model. J. Comput. Phys. 212, 434-464 (2004) [2] Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12, 861-889 (1986) [3] Balsara, D.S.: Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 7504-7517 (2012) [4] Balsara, D.S., Garain, S., Florinski, V., Boscheri, W.: An efficient class of WENO schemes with adaptive order for unstructured meshes. J. Comput. Phys. 404, 109062 (2020) [5] Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780-804 (2016) [6] Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.-D.: Efficient, high-accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228, 2480 (2009) [7] Balsara, D.S., Samantaray, S., Subramanian, S.: Efficient WENO-based prolongation strategies for divergence-preserving vector fields. Commun. Appl. Math. Comput. 5, 428-484 (2023) [8] Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405-452 (2000) [9] Bdzil, J.B., Kapila, A., Hennessey, M.P.: Shock structure for the seven-equation, two-phase continuum-mixture model. Combust. Theory Model. 25(6), 970-1001 (2021) [10] Berberich, J.P., Käppeli, R., Chandrashekar, P., Klingenberg, C.: High order discretely well-balanced methods for arbitrary hydrostatic atmospheres. Commun. Comput. Phys. 30(3), 666-708 (2021) [11] Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3101-3211 (2008) [12] Boscheri, W., Balsara, D.S.: High order direct Arbitrary-Lagrangian-Eulerian (ALE) PNPM schemes on unstructured meshes. J. Comput. Phys. 398, 108899 (2019) [13] Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766-1792 (2011) [14] Castro, M., Gallardo, J.E., Pares, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products, applications to shallow-water systems. Math. Comput. 75(255), 1103-1134 (2006) [15] Castro, M.J., Pardo, A., Parés, C., Toro, E.F.: On some fast well-balanced first order solvers for nonconservative systems. Math. Comput. 79, 1427-1472 (2010) [16] Chiochetti, S., Müller, C.: A solver for stiff finite-rate relaxation in Baer-Nunziato two-phase flow models. Fluid Mech. Appl. 121, 31-44 (2020). https://doi.org/10.1007/978-3-030-33338-6_3 [17] Coquel, F., Marmignon, C., Rai, P., Renac, F.: An entropy stable high-order discontinuous Galerkin spectral element method for the Baer-Nunziato two-phase flow model. J. Comput. Phys. 431, 110135 (2021) [18] Cravero, I., Semplice, M.: On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes. J. Sci. Comput. 67(3), 1219-1246 (2016) [19] Delchini, M.O., Ragusa, J.C., Berry, R.A.: Viscous regularization for the non-equilibrium seven-equation two-phase flow model. J. Sci. Comput. 69, 764-804 (2016) [20] Dumbser, M., Balsara, D.S.: A new, efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304, 275-319 (2016) [21] Dumbser, M., Boscheri, W.: High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: applications to compressible multi-phase flows. Comput. Fluids 86, 405-432 (2013) [22] Dumbser, M., Castro, M., Parés, C., Toro, E.F.: ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows. Comput. Fluids 38, 1731-1748 (2009) [23] Dumbser, M., Hidalgo, A., Castro, M., Parés, C., Toro, E.F.: FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 199, 625-647 (2010) [24] Dumbser, M., Hidalgo, A., Zanotti, O.: High-order space-time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 268, 359-387 (2014) [25] Dumbser, M., Iben, U., Ioriatti, M.: An efficient semi-implicit finite volume method for axially symmetric compressible flows in compliant tubes. Appl. Numer. Math. 89, 24-44 (2015) [26] Dumbser, M., Käser, M.: Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221, 693-723 (2007) [27] Friedrichs, O.: Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194-212 (1998) [28] Gerolymos, G.A., Sénéchal, D., Vallet, I.: Very high order WENO schemes. J. Comput. Phys. 228, 8481-8524 (2009) [29] Gonthier, K.A., Powers, J.M.: A numerical investigation of transient detonation in granulated material. Shock Waves 6(4), 183-195 (1996) [30] Gonthier, K.A., Powers, J.M.: A high resolution numerical method for a two-phase model of deflagration-to-detonation transition. J. Comput. Phys. 163(2), 376-433 (2000) [31] Grosheintz-Laval, L., Käppeli, R.: Well-balanced finite volume schemes for nearly steady adiabatic flows. J. Comput. Phys. 423, 109805 (2020) [32] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231-303 (1987) [33] Hennessey, M.P., Kapila, A., Schwendeman, D.W.: An HLLC-type Riemann solver and high-resolution Godunov method for a two-phase model of reactive flow with general equations of state. J. Comput. Phys. 405, 109180 (2020) [34] Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542-567 (2006) [35] Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202-228 (1996) [36] Kapila, A., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations. Phys. Fluids 13(10), 3002-3024 (2001) [37] Käppeli, R.: Well-balanced methods for computational astrophysics. Living Rev. Comput. Astrophys. 8(2), 1-88 (2022) [38] Käppeli, R., Mishra, S.: Well-balanced schemes for the Euler equations with gravitation. J. Comput. Phys. 259, 199-219 (2014) [39] Käser, M., Iske, A.: ADER schemes on adaptive triangular meshes for scalar conservation laws. J. Comput. Phys. 205, 486-508 (2005) [40] Kupka, F., Happenhofer, N., Higueras, I., Koch, O.: Total-variation-diminishing implicit-explicit Runge-Kutta methods for the simulation of double-diffusive convection in astrophysics. J. Comput. Phys. 231, 3561-3586 (2012) [41] LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave propagation algorithm. J. Comput. Phys. 146, 346-365 (1998) [42] Levy, D., Puppo, G., Russo, G.: Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22, 656-672 (2000) [43] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200-212 (1994) [44] Pao, S.P., Salas, M.D.: A numerical study of two-dimensional shock-vortex interaction. In: AIAA Paper 81-1205 14th Fluid and Plasma Dynamics Conference. American Institute of Aeronautics and Astronautics, Reston (1981) [45] Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129 (2005) [46] Pelanti, M., Bouchut, F., Mangeney, A.: A Roe-type scheme for two-phase shallow granular flows over variable topography. Math. Model. Numer. Anal. 42, 851-885 (2008) [47] Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Continuum Mech. Thermodyn. 30, 1343-1378 (2018) [48] Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Continuum Mech. Thermodyn. 28, 85-104 (2016) [49] Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A 363, 1573-1601 (2005) [50] Powers, J.M.: Two-phase viscous modeling of compaction of granular materials. Phys. Fluids 16(8), 2975-2990 (2004) [51] Rhebergen, S., Bokhove, O., van der Vegt, J.J.W.: Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227, 1887-1922 (2008) [52] Saurel, R., Abgrall, R.: A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150, 425-467 (1999) [53] Schwendeman, D.W., Wahle, C.W., Kapila, A.K.: The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212, 490-526 (2006) [54] Semplice, M., Coco, A., Russo, G.: Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction. J. Sci. Comput. 66(2), 692-724 (2016) [55] Shu, C.-W.: High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev. 51, 82-126 (2009) [56] Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer. 29, 701-762 (2020) [57] Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439-471 (1988) [58] Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32-78 (1989) [59] Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time-stepping schemes. SIAM J. Anal. 40, 469-491 (2002) [60] Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods. Math. Comput. Simul. 62, 125-135 (2003) [61] Tokareva, S.A., Toro, E.F.: HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229, 3573-3604 (2010) [62] Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115-173 (1984) [63] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110-121 (2016) [64] Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659-683 (2018) |