1. Balsara, D.S.: A two-dimensional HLLC Riemann solver with applications to Euler and MHD flows. J. Comp. Phys. 231, 7476-7503 (2012) 2. Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174, 614-648 (2001) 3. Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228, 5040-5056 (2009) 4. Balsara, D.S.: Higher order accurate space-time schemes for computational astrophysics - Part I: finite volume methods. Liv. Rev. Computat. Astrophy. 3, 2 (2017). https:// doi. org/ 10. 1007/ s41115- 017- 0002-8 5. Balsara, D.S.: Multidimensional extension of the HLLE Riemann solver; application to Euler and magnetohydrodynamical flows. J. Comput. Phys. 229, 1970-1993 (2010) 6. Balsara, D.S.: Multidimensional Riemann problem with self-similar internal structure - Part I-application to hyperbolic conservation laws on structured meshes. J. Comput. Phys. 277, 163-200 (2014) 7. Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. 151, 149-184 (2004) 8. Balsara, D.S., Amano, T., Garain, S., Kim, J.: High order accuracy divergence-free scheme for the electrodynamics of relativistic plasmas with multidimensional Riemann solvers. J. Comput. Phys. 318, 169-200 (2016) 9. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780-804 (2016) 10. Balsara, D.S., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - comparison with Runge-Kutta methods. J. Comput. Phys. 235, 934-969 (2013) 11. Balsara, D.S., Nkonga, B.: Formulating multidimensional Riemann solvers in similarity variables - Part III - a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346, 25-48 (2017) 12. Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.-D., Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228, 2480-2516 (2009) 13. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405-452 (2000) 14. Balsara, D.S., Spicer, D.S.: A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations. J. Comput. Phys. 149, 270-292 (1999) 15. Balsara, D.S., Taflove, A., Garain, S., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - part I, secondorder FVTD schemes. J. Comput. Phys. 349, 604-635 (2017) 16. Balsara, D.S., Taflove, A., Garain, S., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution - part II, higherorder FVTD schemes. J. Comput. Phys. 354, 613-645 (2018) 17. Chandrasekaran, S., Juckeland, G.: OpenACC for Programmers: Concepts and Strategies. Addison-Wesley, Boston (2018) 18. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press, Cambridge, MA (2008) 19. Colella, P.: Multidimensional upwind methods for hyperbolic conservation laws. J. Comput. Phys. 87, 171 (1990) 20. Dai, W., Woodward, P.R.: On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows. Astrophys. J. 494, 317-335 (1998) 21. Dumbser, M., Balsara, D.S.: A new, efficient formulation of the HLLEM riemann solver for general conservative and non-conservative hyperbolic systems. J. Comput. Phys. 304, 275-319 (2016) 22. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D.: A unified framework for the construction of onestep finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209-8253 (2008) 23. Dumbser, M., Zanotti, O., Hidalgo, A., Balsara, D.S.: ADER-WENO Finite volume schemes with spacetime adaptive mesh refinement. J. Comput. Phys. 248, 257-286 (2013) 24. Einfeldt, B., Munz, C.-D., Roe, P.L., Sjogreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273-295 (1991) 25. Garain, S., Balsara, D.S., Reid, J.: Comparing Coarray Fortran (CAF) with MPI for several structured mesh PDE applications. J. Comput. Phys. 297, 237-253 (2015) 26. Godunov, S.K.: Finite difference methods for the computation of discontinuous solutions of the Equations of Fluid Dynamics. Mathematics of the USSR, Sbornik. 47, 271-306 (1959) 27. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231-303 (1987) 28. Harten, A., Lax, P.D., van Leer, B.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 289-315 (1983) 29. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202- 228 (1996) 30. Roe, P.L.: Approximate Riemann solver, parameter vectors and difference schemes. J. Comput. Phys. 43, 357-372 (1981) 31. Rusanov, V.V.: Calculation of interaction of non-steady shock waves with obstacles. J. Comput. Math. Phys. USSR 1, 267 (1961) 32. Ryu, D., Miniati, F., Jones, T.W., Frank, A.: A divergence-free upwind code for multidimensional magnetohydrodynamic flows. Astrophys. J. 509, 244-255 (1998) 33. Shu, C.-W.: Total variation-diminishing time discretizations. SIAM J Sci. Stat. Comput. 9, 1073-1084 (1988) 34. Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439-471 (1988) 35. Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32-78 (1989) 36. Subramanian, S., Balsara, D.S., Gagne, M., A.: ud-Doula, Modeling magnetic massive stars in 3D i: isothermal simulations of a magnetic O star. Month. Note. Royal Astronom. Soc. 515(1), 237-255 (2022) 37. Titarev, V.A., Toro, E.F.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17(1/2/3/4), 609-618 (2002) 38. Titarev, V.A., Toro, E.F.: ADER schemes for three-dimensional nonlinear hyperbolic systems. J. Comput. Phys. 204, 715-736 (2005) 39. Toro, E.F., Spruce, M., Speares, W.: Restoration of contact surface in the HLL Riemann solver. Shock Waves 4, 25-34 (1994) 40. Toro, E.F., Titarev, V.A.: Solution of the generalized Riemann problem for advection reaction equations. Proc. R. Soc. Lond. Ser. A 458, 271-281 (2002) 41. Van Leer, B.: Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101-136 (1979) 42. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115-173 (1984) |