1.Arévalo, C., Söderlind, G., Hadjimichael, Y., Fekete, I.:Local error estimation and step size control in adaptive linear multistep methods.Numer.Algor.86, 537-556 (2021) 2.Bassi, F., Botti, L., Colombo, A., Crivellini, A., Ghidoni, A., Massa, F.:On the development of an implicit high-order discontinuous Galerkin method for DNS and implicit LES of turbulent fows.Eur.J.Mech.B/Fluids 55, 367-379 (2016) 3.Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.:Implicit time integration schemes for the unsteady compressible Navier-Stokes equations:laminar fow.J.Comput.Phys.179(1), 313-329 (2002) 4.Birken, P., Gassner, G., Haas, M., Munz, C.-D.:Preconditioning for modal discontinuous Galerkin methods for unsteady 3D Navier-Stokes equations.J.Comput.Phys.240, 20-35 (2013) 5.Blom, D.S., Birken, P., Bijl, H., Kessels, F., Meister, A., van Zuijlen, A.H.:A comparison of Rosenbrock and ESDIRK methods combined with iterative solvers for unsteady compressible fows.Adv.Comput.Math.42(6), 1401-1426 (2016) 6.Bücker, H.M., Pollul, B., Rasch, A.:On CFL evolution strategies for implicit upwind methods in linearized Euler equations.Int.J.Numer.Methods Fluids 59(1), 1-18 (2009) 7.De Wiart, C.C., Hillewaert, K., Duponcheel, M., Winckelmans, G.:Assessment of a discontinuous Galerkin method for the simulation of vortical fows at high Reynolds number.Int.J.Numer.Methods Fluids 74(7), 469-493 (2014) 8.Eisenstat, S.C., Walker, H.E.:Choosing the forcing terms in an inexact newton method.SIAM J.Sci.Comput.17(1), 16-32 (1996) 9.Grinstein, F.F., Margolin, L.G., Rider, W.J.:Implicit Large Eddy Simulation:Computing Turbulent Fluid Dynamics.Cambridge University Press, Cambridge (2007) 10.Hartmann, R., Houston, P.:An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations.J.Comput.Phys.227(22), 9670-9685 (2008) 11.Holst, K.R., Glasby, R.S., Bond, R.B.:On the efect of temporal error in high-order simulations of unsteady fows.J.Comput.Phys.402, 108989 (2020) 12.Kalkote, N., Assam, A., Eswaran, V.:Acceleration of later convergence in a density-based solver using adaptive time stepping.AIAA J.57(1), 352-364 (2019) 13.Karniadakis, G., Sherwin, S.:Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn.Oxford Science Publications, Oxford (2013) 14.Kelley, C.T.:Numerical methods for nonlinear equations.Acta Numerica 27, 207-287 (2018) 15.Kennedy, C.A., Carpenter, M.H.:Diagonally implicit Runge-Kutta methods for ordinary diferential equations.A review.NASA report TM-2016-219173 (2016) 16.Knoll, D.A., Keyes, D.E.:Jacobian-free Newton-Krylov methods:a survey of approaches and applications.J.Comput.Phys.193(2), 357-397 (2004) 17.Kværnø, A.:Singly diagonally implicit Runge-Kutta methods with an explicit frst stage.BIT Numer.Math.44(3), 489-502 (2004) 18.Lian, C., Xia, G., Merkle, C.L.:Solution-limited time stepping to enhance reliability in CFD applications.J.Comput.Phys.228, 4836-4857 (2009) 19.Meisrimel, P., Birken, P.:Goal oriented time adaptivity using local error estimates.Algorithms 13(5), 113 (2020) 20.Mengaldo, G.:Discontinuous Spectral/hp Element Methods:Development, Analysis and Applications to Compressible Flows.PhD thesis, Imperial College London, UK (2015) 21.Noventa, G., Massa, F., Bassi, F., Colombo, A., Franchina, N., Ghidoni, A.:A high-order discontinuous Galerkin solver for unsteady incompressible turbulent fows.Comput.Fluids 139, 248-260 (2016) 22.Noventa, G., Massa, F., Rebay, S., Bassi, F., Ghidoni, A.:Robustness and efciency of an implicit time-adaptive discontinuous Galerkin solver for unsteady fows.Comput.Fluids 204, 104529 (2020) 23.Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.:Experimental and numerical studies of the fow over a circular cylinder at Reynolds number 3900.Phys.Fluids 20(8), 085101 (2008) 24.Söderlind, G.:Automatic control and adaptive time-stepping.Numer.Algorithms 31(1), 281-310 (2002) 25.Söderlind, G., Wang, L.:Adaptive time-stepping and computational stability.J.Comput.Appl.Math.185(2), 225-243 (2006) 26.Toro, E.F.:Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn.Springer, Berlin (2009) 27.Vandenhoeck, R., Lani, A.:Implicit high-order fux reconstruction solver for high-speed compressible fows.Comput.Phys.Commun.242, 1-24 (2019) 28.Vanderstraeten, D.:An expert system to control the CFL number of implicit upwind methods.In:Toro, E.F.(ed) Godunov Methods:Theory and Applications, pp.977-984.Springer, Boston (2001) 29.Yan, Z.-G., Pan, Y., Castiglioni, G., Hillewaert, K., Peiró, J., Moxey, D., Sherwin, S.J.:Nektar++:design and implementation of an implicit, spectral/hp element, compressible fow solver using a Jacobian-free Newton Krylov approach.Comput.Math.Appl.81, 351-372 (2020) 30.Yildirim, A., Kenway, G.K.W., Mader, C.A., Martins, J.R.R.A.:A Jacobian-free approximate NewtonKrylov startup strategy for RANS simulations.J.Comput.Phys.397, 108741 (2019) |