Communications on Applied Mathematics and Computation ›› 2022, Vol. 4 ›› Issue (2): 697-727.doi: 10.1007/s42967-021-00136-3
Previous Articles Next Articles
Will Pazner, Tzanio Kolev
Received:
2020-08-31
Revised:
2021-02-06
Online:
2022-06-20
Published:
2022-04-29
Contact:
Will Pazner
E-mail:pazner1@llnl.gov
Supported by:
CLC Number:
Will Pazner, Tzanio Kolev. Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp-Refnement[J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 697-727.
1.Anderson, R., et al.:MFEM:a modular fnite element methods library.Comput.Math.Appl.81, 42-74 (2021).https://doi.org/10.1016/j.camwa.2020.06.009 2.Antonietti, P.F., Ayuso, B.:Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems:non-overlapping case.ESAIM:Mathematical Modelling and Numerical Analysis 41(1), 21-54 (2007) https://doi.org/10.1051/m2an:2007006 3.Antonietti, P.F., Giani, S., Houston, P.:Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains.J.Sci.Comput.60(1), 203-227 (2013) https://doi.org/10.1007/s10915-013-9792-y 4.Antonietti, P.F., Houston, P.:A class of domain decomposition preconditioners for hp-discontinuous Galerkin fnite element methods.J.Sci.Comput.46(1), 124-149 (2010) https://doi.org/10.1007/s10915-010-9390-1 5.Antonietti, P.F., Houston, P., Pennesi, G., Suli, E.:An agglomeration-based massively parallel nonoverlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids.Math.Comput.89(325), 2047-2083 (2020) https://doi.org/10.1090/mcom/3510 6.Antonietti, P.F., Houston, P., Smears, I.:A note on optimal spectral bounds for nonoverlapping domain decomposition preconditioners for hp-version discontinuous Galerkin methods.Int.J.Numer.Anal.Model.13(4), 513-524 (2016) 7.Antonietti, P.F., Melas, L.:Algebraic multigrid schemes for high-order nodal discontinuous Galerkin methods.SIAM J.Sci.Comput.42(2), A1147-A1173 (2020) https://doi.org/10.1137/18m12 04383 8.Antonietti, P.F., Sarti, M., Verani, M.:Multigrid algorithms for hp-discontinuous Galerkin discretizations of elliptic problems.SIAM J.Numer.Anal.53(1), 598-618 (2015) https://doi.org/10.1137/130947015 9.Antonietti, P.F., Sarti, M., Verani, M., Zikatanov, L.T.:A uniform additive Schwarz preconditioner for high-order discontinuous Galerkin approximations of elliptic problems.J.Sci.Comput.70(2), 608-630 (2016) https://doi.org/10.1007/s10915-016-0259-9 10.Arnold, D.N.:An interior penalty fnite element method with discontinuous elements.SIAM J.Numer.Anal.19(4), 742-760 (1982) https://doi.org/10.1137/0719052 11.Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.:Unifed analysis of discontinuous Galerkin methods for elliptic problems.SIAM J.Numer.Anal.39(5), 1749-1779 (2002) https://doi.org/10.1137/S0036142901384162 12.Bassi, F., Rebay, S.:A high order discontinuous Galerkin method for compressible turbulent fows.In:Cockburn, B., Karniadakis, G.E., Shu, C.-W.(eds.) Discontinuous Galerkin Methods, vol.11, pp.77-88.Springer, Berlin (2000) https://doi.org/10.1007/978-3-642-59721-3_4 13.Bastian, P., Blatt, M., Scheichl, R.:Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems.Numer.Linear Algebra Appl.19(2), 367-388 (2012) https://doi.org/10.1002/nla.1816 14.Bernardi, C., Maday, Y., Rapetti, F.:Basics and some applications of the mortar element method.GAMM-Mitteilungen 28(2), 97-123 (2005) https://doi.org/10.1002/gamm.201490020 15.Braess, D.:Finite Elements:Theory, Fast Solvers, and Applications in Solid Mechanics.Cambridge University Press, Cambridge (2007) https://doi.org/10.1017/cbo9780511618635 16.Brix, K., Campos Pinto, M., Canuto, C., Dahmen, W.:Multilevel preconditioning of discontinuous Galerkin spectral element methods.Part I:geometrically conforming meshes.IMA J.Numer.Anal.35(4), 1487-1532 (2014).https://doi.org/10.1093/imanum/dru053 17.Brix, K., Pinto, M.C., Dahmen, W.:A multilevel preconditioner for the interior penalty discontinuous Galerkin method.SIAM J.Numer.Anal.46(5), 2742-2768 (2008) https://doi.org/10.1137/07069691x 18.Burman, E., Ern, A.:Continuous interior penalty hp-fnite element methods for advection and advection-difusion equations.Math.Comput.76(259), 1119-1141 (2007) https://doi.org/10.1090/s0025-5718-07-01951-5 19.Canuto, C.:Stabilization of spectral methods by fnite element bubble functions.Comput.Methods Appl.Mech.Eng.116(1/2/3/4), 13-26 (1994) 20.Canuto, C., Gervasio, P., Quarteroni, A.:Finite-element preconditioning of G-NI spectral methods.SIAM J.Sci.Comput.31(6), 4422-4451 (2010) https://doi.org/10.1137/090746367 21.Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.:Spectral Methods:Fundamentals in Single Domains.Springer, Berlin (2006) https://doi.org/10.1007/978-3-540-30726-6 22.Canuto, C., Quarteroni, A.:Approximation results for orthogonal polynomials in Sobolev spaces.Math.Comput.38(157), 67-86 (1982) https://doi.org/10.1090/s0025-5718-1982-0637287-3 23.Castillo, P.:Performance of discontinuous Galerkin methods for elliptic PDEs.SIAM J.Sci.Comput.24(2), 524-547 (2002) https://doi.org/10.1137/s1064827501388339 24.Červený, J., Dobrev, V., Kolev, T.:Nonconforming mesh refnement for high-order fnite elements.SIAM J.Sci.Comput.41(4), C367-C392 (2019) https://doi.org/10.1137/18m1193992 25.Chung, E.T., Kim, H.H., Widlund, O.B.:Two-level overlapping Schwarz algorithms for a staggered discontinuous Galerkin method.SIAM J.Numer.Anal.51(1), 47-67 (2013) https://doi.org/10.1137/110849432 26.Cockburn, B., Shu, C.-W.:The local discontinuous Galerkin method for time-dependent convection difusion systems.SIAM J.Numer.Anal.35(6), 2440-2463 (1998) https://doi.org/10.1137/s0036 142997316712 27.Cockburn, B., Shu, C.-W.:Runge-Kutta discontinuous Galerkin methods for convection-dominated problems.J.Sci.Comput.16(3), 173-261 (2001) https://doi.org/10.1023/a:1012873910884 28.Demkowicz, L., Rachowicz, W., Devloo, P.:A fully automatic hp-adaptivity.J.Sci.Comput.17(1/2/3/4), 117-142 (2002) https://doi.org/10.1023/a:1015192312705 29.Dobrev, V.A., Lazarov, R.D., Vassilevski, P.S., Zikatanov, L.T.:Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations.Numer.Linear Algebra Appl.13(9), 753-770 (2006) https://doi.org/10.1002/nla.504 30.Dryja, M., Widlund, O.B.:Some domain decomposition algorithms for elliptic problems.In:Kincaid, D.R., Hayes, L.J.(eds.) Iterative Methods for Large Linear Systems, pp.273-291.Academic Press, New York (1990).https://doi.org/10.1016/B978-0-12-407475-0.50022-X 31.Fehn, N., Wall, W.A., Kronbichler, M.:On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations.J.Comput.Phys.351, 392-421 (2017) https://doi.org/10.1016/j.jcp.2017.09.031 32.Fortunato, D., Rycroft, C.H., Saye, R.:Efcient operator-coarsening multigrid schemes for local discontinuous Galerkin methods.SIAM J.Sci.Comput.41(6), A3913-A3937 (2019) https://doi.org/10.1137/18m1206357 33.Gopalakrishnan, J., Kanschat, G.:A multilevel discontinuous Galerkin method.Numer.Math.95(3), 527-550 (2003) https://doi.org/10.1007/s002110200392 34.Griebel, M., Oswald, P.:On the abstract theory of additive and multiplicative Schwarz algorithms.Numer.Math.70(2), 163-180 (1995) https://doi.org/10.1007/s002110050115 35.Haut, T.S., Southworth, B.S., Maginot, P.G., Tomov, V.Z.:Difusion synthetic acceleration preconditioning for discontinuous Galerkin discretizations of SN transport on high-order curved meshes.SIAM J.Sci.Comput.42(5), B1271-B1301 (2020) https://doi.org/10.1137/19m124993x 36.Henson, V.E., Yang, U.M.:BoomerAMG:a parallel algebraic multigrid solver and preconditioner.Appl.Numer.Math.41(1), 155-177 (2002) https://doi.org/10.1016/s0168-9274(01)00115-5 37.Houston, P., Schötzau, D., Wihler, T.P.:Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems.Math.Models Methods Appl.Sci.17(01), 33-62 (2007) https://doi.org/10.1142/s0218202507001826 38.Houston, P., Süli, E., Wihler, T.P.:A posteriori error analysis of hp-version discontinuous Galerkin fnite-element methods for second-order quasi-linear elliptic PDEs.IMA J.Numer.Anal.28(2), 245-273 (2007) https://doi.org/10.1093/imanum/drm009 39.Kanschat, G.:Multilevel methods for discontinuous Galerkin FEM on locally refned meshes.Comput.Struct.82(28), 2437-2445 (2004) https://doi.org/10.1016/j.compstruc.2004.04.015 40.Karakashian, O.A., Pascal, F.:A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems.SIAM J.Numer.Anal.41(6), 2374-2399 (2003) https://doi.org/10.1137/s0036142902405217 41.Melenk, J., Gerdes, K., Schwab, C.:Fully discrete hp-fnite elements:fast quadrature.Comput.Methods Appl.Mech.Eng.190(32/33), 4339-4364 (2001) https://doi.org/10.1016/s0045-7825(00)00322-4 42.MFEM:Modular Finite Element Methods[Software].www.mfem.org https://doi.org/10.11578/dc.20171025.1248 43.Orszag, S.A.:Spectral methods for problems in complex geometries.J.Comput.Phys.37(1), 70-92 (1980) https://doi.org/10.1016/0021-9991(80)90005-4 44.Oswald, P.:On a BPX-preconditioner for P1 elements.Computing 51(2), 125-133 (1993) https://doi.org/10.1007/bf02243847 45.Pazner, W.:Efcient low-order refned preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods.J.Sci.Comput.42(5), A3055-A3083 (2020) 46.Peraire, J., Persson, P.-O.:The compact discontinuous Galerkin (CDG) method for elliptic problems.SIAM J.Sci.Comput.30(4), 1806-1824 (2008) https://doi.org/10.1137/070685518 47.Pazner, W., Persson, P.-O.:Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods.J.Comput.Phys.354, 344-369 (2018) https://doi.org/10.1016/j.jcp.2017.10.030 48.Perugia, I., Schötzau, D.:An hp-analysis of the local discontinuous Galerkin method for difusion problems.J.Sci.Comput.17(1/2/3/4), 561-571 (2002) https://doi.org/10.1023/a:1015118613130 49.Shahbazi, K.:An explicit expression for the penalty parameter of the interior penalty method.J.Comput.Phys.205(2), 401-407 (2005) https://doi.org/10.1016/j.jcp.2004.11.017 50.Shahbazi, K., Fischer, P.F., Ethier, C.R.:A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations.J.Comput.Phys.222(1), 391-407 (2007).https://doi.org/10.1016/j.jcp.2006.07.029 51.Šolín, P., Červený, J., Doležel, I.:Arbitrary-level hanging nodes and automatic adaptivity in the hpFEM.Math.Comput.Simul.77(1), 117-132 (2008) https://doi.org/10.1016/j.matcom.2007.02.011 52.Szabó, B., Babuška, I.:Wiley Series in Computational Mechanics.Finite Element Analysis.Wiley, Amsterdam (1991) 53.Toselli, A., Widlund, O.B.:Domain Decomposition Methods-Algorithms and Theory.Springer Series in Computational Mathematics.Springer-Verlag, Berlin/Heidelberg (2005).https://doi.org/10.1007/b137868 54.Wang, Z., et al.:High-order CFD methods:current status and perspective.Int.J.Numer.Meth.Fluids 72(8), 811-845 (2013) https://doi.org/10.1002/fd.3767 55.Wihler, T., Frauenfelder, P., Schwab, C.:Exponential convergence of the hp-DGFEM for difusion problems.Comput.Math.Appl.46(1), 183-205 (2003) https://doi.org/10.1016/s0898-1221(03) 90088-5 56.Xu, J.:Iterative methods by space decomposition and subspace correction.SIAM Rev.34(4), 581-613 (1992) https://doi.org/10.1137/1034116 57.Xu, J.:The method of subspace corrections.J.Comput.Appl.Math.128(1/2), 335-362 (2001) https://doi.org/10.1016/s0377-0427(00)00518-5 58.Xu, J., Zikatanov, L.:The method of alternating projections and the method of subspace corrections in Hilbert space.J.Am.Math.Soc.15(03), 573-598 (2002) https://doi.org/10.1090/s0894-0347-02-00398-3 59.Zhu, L., Giani, S., Houston, P., Schötzau, D.:Energy norm a posteriori error estimation for hp-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions.Math.Models Methods Appl.Sci.21(02), 267-306 (2011) https://doi.org/10.1142/s0218202511005052 60.Zhu, L., Schötzau, D.:A robust a posteriori error estimate for hp-adaptive DG methods for convectiondifusion equations.IMA J.Numer.Anal.31(3), 971-1005 (2010) https://doi.org/10.1093/imanum/drp038 |
[1] | Xiaozhou Li. How to Design a Generic Accuracy-Enhancing Filter for Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 759-782. |
[2] | Lorenzo Botti, Daniele A. Di Pietro. p-Multilevel Preconditioners for HHO Discretizations of the Stokes Equations with Static Condensation [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 783-822. |
[3] | Ohannes A. Karakashian, Michael M. Wise. A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 823-854. |
[4] | Lu Zhang, Daniel Appelö, Thomas Hagstrom. Energy-Based Discontinuous Galerkin Difference Methods for Second-Order Wave Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 855-879. |
[5] | Poorvi Shukla, J. J. W. van der Vegt. A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 904-944. |
[6] | Dinshaw S. Balsara, Roger Käppeli. Von Neumann Stability Analysis of DG-Like and PNPM-Like Schemes for PDEs with Globally Curl-Preserving Evolution of Vector Fields [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 945-985. |
[7] | Lukáš Vacek, Václav Kučera. Discontinuous Galerkin Method for Macroscopic Traffic Flow Models on Networks [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 986-1010. |
[8] | Jiawei Sun, Shusen Xie, Yulong Xing. Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 381-416. |
[9] | Jennifer K. Ryan. Capitalizing on Superconvergence for More Accurate Multi-Resolution Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 417-436. |
[10] | Mahboub Baccouch. Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second-Order Elliptic Problems on Cartesian Grids [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 437-476. |
[11] | Gang Chen, Bernardo Cockburn, John R. Singler, Yangwen Zhang. Superconvergent Interpolatory HDG Methods for Reaction Difusion Equations II: HHO-Inspired Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 477-499. |
[12] | Xue Hong, Yinhua Xia. Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Methods for KdV Type Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 530-562. |
[13] | Xiaobing Feng, Thomas Lewis, Aaron Rapp. Dual-Wind Discontinuous Galerkin Methods for Stationary Hamilton-Jacobi Equations and Regularized Hamilton-Jacobi Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 563-596. |
[14] | Andreas Dedner, Tristan Pryer. Discontinuous Galerkin Methods for a Class of Nonvariational Problems [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 634-656. |
[15] | Andreas Dedner, Robert Klöfkorn. Extendible and Efcient Python Framework for Solving Evolution Equations with Stabilized Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 657-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||