Communications on Applied Mathematics and Computation ›› 2022, Vol. 4 ›› Issue (3): 783-822.doi: 10.1007/s42967-021-00142-5
• ORIGINAL PAPER • Previous Articles Next Articles
Lorenzo Botti1, Daniele A. Di Pietro2
Received:
2020-09-28
Revised:
2021-04-21
Online:
2022-09-20
Published:
2022-07-04
Contact:
Lorenzo Botti,E-mail:lorenzo.botti@unibg.it;Daniele A. Di Pietro,E-mail:daniele.di-pietro@umontpellier.fr
E-mail:lorenzo.botti@unibg.it;daniele.di-pietro@umontpellier.fr
Supported by:
CLC Number:
Lorenzo Botti, Daniele A. Di Pietro. p-Multilevel Preconditioners for HHO Discretizations of the Stokes Equations with Static Condensation[J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 783-822.
[1] Adler, J.H., Benson, T.R., MacLachlan, S.P.: Preconditioning a mass-conserving discontinuous Galerkin discretization of the Stokes equations. Numer. Linear Algebra Appl. 24(3), e2047 (2017) [2] Aghili, J., Boyaval, S., Di Pietro, D.A.: Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Methods Appl. Math. 15(2), 111–134 (2015) [3] Antonietti, P.F., Giani, S., Houston, P.: [4] Antonietti, P.F., Sarti, M., Verani, M.: Multigrid algorithms for [5] Antonietti, P.F., Cangiani, A., Collis, J., Dong, Z., Georgoulis, E.H., Giani, S., Houston, P.: Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, volume 114 of Lect. Notes Comput. Sci. Eng., pp. 279–308. Springer, Cham (2016) [6] Antonietti, P.F., Houston, P., Pennesi, G., Süli, E.: An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids. Math. Comput. 89(325), 2047–2083 (2020) [7] Ayuso de Dios, B., Brezzi, F., Marini, L., Xu, J., Zikatanov, L.: A simple preconditioner for a discontinuous Galerkin method for the Stokes problem. J. Sci. Comput. 58, 517–547 (2012) [8] Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page. https://www.mcs.anl.gov/petsc (2019) [9] Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997) [10] Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds) Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, pp. 99–109 (1997) [11] Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations. J. Comput. Phys. 218(2), 794–815 (2006) [12] Bassi, F., Ghidoni, A., Rebay, S., Tesini, P.: High-order accurate [13] Bassi, F., Botti, L., Colombo, A., Rebay, S.: Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations. Comput. Fluids 61, 77–85 (2012) [14] Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012) [15] Bassi, F., Botti, L., Colombo, A.: Agglomeration-based physical frame DG discretizations: an attempt to be mesh free. Math. Models Methods Appl. Sci. 24(8), 1495–1539 (2014) [16] Botti, L., Di Pietro, D.A.: Numerical assessment of hybrid high-order methods on curved meshes and comparison with discontinuous Galerkin methods. J. Comput. Phys. 370, 58–84 (2018) [17] Botti, L., Colombo, A., Bassi, F.: [18] Botti, L., Di Pietro, D.A., Droniou, J.: A hybrid high-order discretisation of the Brinkman problem robust in the Darcy and Stokes limits. Comput. Methods Appl. Mech. Eng. 341, 278–310 (2018) [19] Botti, L., Colombo, A., Crivellini, A., Franciolini, M.: [20] Botti, L., Di Pietro, D.A., Droniou, J.: A hybrid high-order method for the incompressible Navier-Stokes equations based on Temam’s device. J. Comput. Phys. 376, 786–816 (2019) [21] Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: [22] Charrier, D.E., May, D.A., Schnepp, S.M.: Symmetric interior penalty discontinuous Galerkin discretizations and block preconditioning for heterogeneous stokes flow. SIAM J. Sci. Comput. 39(6), B1021–B1042 (2017) [23] Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II. General framework. Math. Comput. 52(186), 411–435 (1989) [24] Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection [25] Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V. Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998) [26] Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989) [27] Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990) [28] Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002) [29] Cockburn, B., Dubois, O., Gopalakrishnan, J., Tan, S.: Multigrid for an HDG method. IMA J. Numer. Anal. 34(4), 1386–1425 (2013) [30] Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016) [31] Di Pietro, D.A.: Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an artificial compressibility flux. Int. J. Numer. Methods Fluids 55(8), 793–813 (2007) [32] Di Pietro, D.A., Droniou, J.: The Hybrid High-order Method for Polytopal Meshes. Design, Analysis, and Applications. Number 19 in Modeling, Simulation and Application. Springer International Publishing (2020) [33] Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comput. 79(271), 1303–1330 (2010) [34] Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathematics and Applications, vol. 69. Springer, Heidelberg (2012) [35] Di Pietro, D.A., Krell, S.: Benchmark session: the 2D Hybrid High-Order method. In: Cancès, C., Omnes, P. (eds) Finite Volumes for Complex Applications VIII: Methods and Theoretical Aspects. pp. 91–106 (2017) [36] Di Pietro, D.A., Krell, S.: A hybrid high-order method for the steady incompressible Navier-Stokes problem. J. Sci. Comput. 74(3), 1677–1705 (2018) [37] Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014) [38] Di Pietro, D.A., Ern, A., Lemaire, S.: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, A Review of Hybrid High-order Methods: Formulations, Computational Aspects, Comparison with Other Methods, no 114 in Lecture Notes in Computational Science and Engineering, pp. 205–236. Springer (2016) [39] Di Pietro, D.A., Hülsemann, F., Matalon, P., Mycek, P., Rüde, U., Ruiz, D.: An [40] Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation, 2nd edn. Oxford University Press, Oxford (2014) [41] Fabien, M.S., Knepley, M.G., Mills, R.T., Rivière, B.M.: Manycore parallel computing for a hybridizable discontinuous Galerkin nested multigrid method. SIAM J. Sci. Comput. 41(2), C73–C96 (2019) [42] Fidkowski, K.J., Oliver, T.A., Lu, J., Darmofal, D.L.: [43] Franciolini, M., Botti, L., Colombo, A., Crivellini, A.: [44] Franciolini, M., Fidkowski, K.J., Crivellini, A.: Efficient discontinuous Galerkin implementations and preconditioners for implicit unsteady compressible flow simulations. Comput. Fluids 203, 104542 (2020) [45] Kanschat, G., Mao, Y.: Multigrid methods for Hdiv-conforming discontinuous Galerkin methods for the Stokes equations. J. Numer. Math. 23(1), 51–66 (2015) [46] Kronbichler, M., Wall, W.A.: A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. SIAM J. Sci. Comput. 40(5), A3423–A3448 (2018) [47] Labeur, R.J., Wells, G.N.: Energy stable and momentum conserving hybrid finite element method for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 34(2), A889–A913 (2012) [48] Nastase, C.R., Mavriplis, D.J.: High-order discontinuous Galerkin methods using an [49] Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230(4), 1147–1170 (2011) [50] Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37. Springer, Berlin (2000) [51] Rhebergen, S., Wells, G.: Preconditioning of a hybridized discontinuous Galerkin finite element method for the Stokes equations. J. Sci. Comput. 77, 1936–1952 (2018) [52] Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier-Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76(3), 1484–1501 (2018) [53] Rønquist, E.M., Patera, A.T.: Spectral element multigrid I. Formulation and numerical results. J. Sci. Comput. 2(4), 389–406 (1987) [54] Shahbazi, K., Mavriplis, D.J., Burgess, N.K.: Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 228(21), 7917–7940 (2009) [55] Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (1996) |
[1] | Xiaozhou Li. How to Design a Generic Accuracy-Enhancing Filter for Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 759-782. |
[2] | Ohannes A. Karakashian, Michael M. Wise. A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 823-854. |
[3] | Lu Zhang, Daniel Appelö, Thomas Hagstrom. Energy-Based Discontinuous Galerkin Difference Methods for Second-Order Wave Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 855-879. |
[4] | Poorvi Shukla, J. J. W. van der Vegt. A Space-Time Interior Penalty Discontinuous Galerkin Method for the Wave Equation [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 904-944. |
[5] | Dinshaw S. Balsara, Roger Käppeli. Von Neumann Stability Analysis of DG-Like and PNPM-Like Schemes for PDEs with Globally Curl-Preserving Evolution of Vector Fields [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 945-985. |
[6] | Lukáš Vacek, Václav Kučera. Discontinuous Galerkin Method for Macroscopic Traffic Flow Models on Networks [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 986-1010. |
[7] | Jiawei Sun, Shusen Xie, Yulong Xing. Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 381-416. |
[8] | Jennifer K. Ryan. Capitalizing on Superconvergence for More Accurate Multi-Resolution Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 417-436. |
[9] | Mahboub Baccouch. Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second-Order Elliptic Problems on Cartesian Grids [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 437-476. |
[10] | Gang Chen, Bernardo Cockburn, John R. Singler, Yangwen Zhang. Superconvergent Interpolatory HDG Methods for Reaction Difusion Equations II: HHO-Inspired Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 477-499. |
[11] | Xue Hong, Yinhua Xia. Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Methods for KdV Type Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 530-562. |
[12] | Xiaobing Feng, Thomas Lewis, Aaron Rapp. Dual-Wind Discontinuous Galerkin Methods for Stationary Hamilton-Jacobi Equations and Regularized Hamilton-Jacobi Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 563-596. |
[13] | Erik Burman, Omar Duran, Alexandre Ern. Hybrid High-Order Methods for the Acoustic Wave Equation in the Time Domain [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 597-633. |
[14] | Andreas Dedner, Tristan Pryer. Discontinuous Galerkin Methods for a Class of Nonvariational Problems [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 634-656. |
[15] | Andreas Dedner, Robert Klöfkorn. Extendible and Efcient Python Framework for Solving Evolution Equations with Stabilized Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 657-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||