Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (5): 2156-2171.doi: 10.1007/s42967-025-00497-z
• ORIGINAL PAPERS • Previous Articles
Yu-Lan Liu, Bo Wu
Received:2024-12-11
Revised:2025-03-24
Accepted:2025-03-27
Online:2025-06-18
Published:2025-06-18
Contact:
Bo Wu,E-mail:wubo@nxu.edu.cn
E-mail:wubo@nxu.edu.cn
Supported by:Yu-Lan Liu, Bo Wu. A Class of Shift-Splitting Preconditioners for Solving the General Block Two-by-Two Linear Systems[J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 2156-2171.
| [1] Bai, Z.-Z.: Structured preconditioners for nonsingular matrices of block two-by-two structures. Math. Comput. 75, 791-815 (2006) [2] Bai, Z.-Z.: Motivations and realizations of Krylov subspace methods for large sparse linear systems. J. Comput. Appl. Math. 283, 71-78 (2015) [3] Bai, Z.-Z.: Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts. Numer. Linear Algebra Appl. 25, e2116 (2018) [4] Bai, Z.-Z., Benzi, M.: Regularized HSS iteration methods for saddle-point linear systems. BIT Numer. Math. 57, 287-311 (2017) [5] Bai, Z.-Z., Duff, I.S., Wathen, A.J.: A class of incomplete orthogonal factorization methods. I: methods and theories. BIT Numer. Math. 41, 53-70 (2001) [6] Bai, Z.-Z., Duff, I.S., Yin, J.-F.: Numerical study on incomplete orthogonal factorization preconditioners. J. Comput. Appl. Math. 226, 22-41 (2009) [7] Bai, Z.-Z., Golub, G.H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27, 1-23 (2007) [8] Bai, Z.-Z., Golub, G.H., Li, C.-K.: Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices. SIAM J. Sci. Comput. 28, 583-603 (2006) [9] Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24, 603-626 (2003) [10] Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1-32 (2004) [11] Bai, Z.-Z., Ng, M.K., Wang, Z.-Q.: Constraint preconditioners for symmetric indefinite matrices. SIAM J. Matrix Anal. Appl. 31, 410-433 (2009) [12] Bai, Z.-Z., Pan, J.-Y.: Matrix Analysis and Computations. SIAM, Philadelphia (2021) [13] Bai, Z.-Z., Parlett, B.N., Wang, Z.-Q.: On generalized successive overrelaxation methods for augmented linear systems. Numer. Math. 102, 1-38 (2005) [14] Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900-2932 (2008) [15] Bai, Z.-Z., Yin, J.-F., Su, Y.-F.: A shift-splitting preconditioner for non-Hermitian positive definite matrices. J. Comput. Math. 24, 539-552 (2006) [16] Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26, 20-41 (2004) [17] Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. SIAM, Philadelphia (2010) [18] Bjorck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996) [19] Cao, Y., Du, J., Niu, Q.: Shift-splitting preconditioners for saddle point problems. J. Comput. Appl. Math. 272, 239-250 (2014) [20] Cao, Y., Miao, S.-X., Ren, Z.-R.: On preconditioned generalized shift-splitting iteration methods for saddle point problems. Comput. Math. Appl. 74, 859-872 (2017) [21] Cao, Y., Yi, S.-C.: A class of Uzawa-PSS iteration methods for nonsingular and singular non-Hermitian saddle point problems. Appl. Math. Comput. 275, 41-49 (2016) [22] Cao, Z.-H.: Augmentation block preconditioners for saddle point-type matrices with singular (1,1) blocks. Numer. Linear Algebra Appl. 15, 515-533 (2008) [23] Cao, Z.-H.: Block triangular Schur complement preconditioners for saddle point problems and application to the Oseen equations. Appl. Numer. Math. 60, 193-207 (2010) [24] Dollar, H.S., Wathen, A.J.: Approximate factorization constraint preconditioners for saddle-point matrices. SIAM J. Sci. Comput. 27, 1555-1572 (2006) [25] Elman, H.C.: Preconditioners for saddle point problems arising in computational fluid dynamics. Appl. Numer. Math. 43, 75-89 (2002) [26] Elman, H.C., Golub, G.H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645-1661 (1994) [27] Fortin, M., Brezzi, F.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991) [28] Gao, W.-L., Li, X.-A., Lu, X.-M.: On quasi shift-splitting iteration method for a class of saddle point problems. Comput. Math. Appl. 79, 2912-2923 (2020) [29] Golub, G.H., Greif, C., Varah, J.M.: An algebraic analysis of a block diagonal preconditioner for saddle point systems. SIAM J. Matrix Anal. Appl. 27, 779-792 (2005) [30] Golub, G.H., Wu, X., Yuan, J.-Y.: SOR-like methods for augmented systems. BIT Numer. Math. 41, 71-85 (2001) [31] Huang, Z.-G., Wang, L.-G., Xu, Z., Cui, J.-J.: The generalized modified shift-splitting preconditioners for nonsymmetric saddle point problems. Appl. Math. Comput. 299, 95-118 (2017) [32] Huang, Z.-H., Su, H.: A modified shift-splitting method for nonsymmetric saddle point problems. J. Comput. Appl. Math. 317, 535-546 (2017) [33] Liang, Z.-Z., Zhang, G.-F.: On block-diagonally preconditioned accelerated parameterized inexact Uzawa method for singular saddle point problems. Appl. Math. Comput. 221, 89-101 (2013) [34] Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969-1972 (2000) [35] Njeru, P.N., Guo, X.-P.: Accelerated SOR-like method for augmented linear systems. BIT Numer. Math. 56, 557-571 (2016) [36] Pan, J.-Y., Ng, M.K., Bai, Z.-Z.: New preconditioners for saddle point problems. Appl. Math. Comput. 172, 762-771 (2006) [37] Song, S.-Z., Huang, Z.-D.: A two-parameter shift-splitting preconditioner for saddle point problems. Comput. Math. Appl. 124, 7-20 (2022) [38] Wathen, A.J.: Preconditioning. Acta Numer. 24, 329-376 (2015) [39] Zhu, M.-Z., Zhang, G.-F., Liang, Z.-Z.: On generalized local Hermitian and skew-Hermitian splitting iterative method for block two-by-two linear systems. Appl. Math. Comput. 250, 463-478 (2015) |
| [1] | Shi-Ping Tang, Yu-Mei Huang. A DTHSS-τ Preconditioner for the Discretized Linear Systems of Space-Fractional Diffusion Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 2097-2119. |
| [2] | Sheng-Zhong Song, Zheng-Da Huang, Bo-Han Zhang. An Improved SSOR-Like Preconditioner for the Non-Hermitian-Positive Definite Linear System with a Dominant Skew-Hermitian Part [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 2080-2096. |
| [3] | Bo Wu. The Parameterized Augmentation Block Preconditioner for Nonsymmetric Saddle Point Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1704-1723. |
| [4] | Fang Chen, Shu-Ru He. Practical Restrictively Preconditioned Conjugate Gradient Methods for a Class of Block Two-by-Two Linear Systems [J]. Communications on Applied Mathematics and Computation, 2025, 7(5): 1639-1651. |
| [5] | Liqun Qi, Chunfeng Cui. Eigenvalues and Jordan Forms of Dual Complex Matrices [J]. Communications on Applied Mathematics and Computation, 2025, 7(4): 1225-1241. |
| [6] | Young Kyu Lee, Shingyu Leung. A Simple Embedding Method for the Laplace-Beltrami Eigenvalue Problem on Implicit Surfaces [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 1189-1216. |
| [7] | Weitao Chen, Chiu-Yen Kao. Review of Computational Approaches to Optimization Problems in Inhomogeneous Rods and Plates [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 236-256. |
| [8] | Bo Wu, Xingbao Gao. Two-Parameter Block Triangular Splitting Preconditioner for Block Two-by-Two Linear Systems [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1601-1615. |
| [9] | Kang-Ya Lu, Shu-Jiao Li. Semi-regularized Hermitian and Skew-Hermitian Splitting Preconditioning for Saddle-Point Linear Systems [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1422-1445. |
| [10] | Will Pazner, Tzanio Kolev. Uniform Subspace Correction Preconditioners for Discontinuous Galerkin Methods with hp-Refnement [J]. Communications on Applied Mathematics and Computation, 2022, 4(2): 697-727. |
| [11] | Ju, Li Zhang. On the Preconditioning Properties of RHSS Preconditioner for Saddle-Point Linear Systems [J]. Communications on Applied Mathematics and Computation, 2021, 3(1): 177-187. |
| [12] | Xue-lei Lin, Pin Lyu, Michael K. Ng, Hai-Wei Sun, Seakweng Vong. An Efcient Second-Order Convergent Scheme for One-Side Space Fractional Difusion Equations with Variable Coefcients [J]. Communications on Applied Mathematics and Computation, 2020, 2(2): 215-239. |
| [13] | Jianguo Huang, Xuehai Huang. A Two-Level Additive Schwarz Preconditioner for Local C0 Discontinuous Galerkin Methods of Kirchhof Plates [J]. Communications on Applied Mathematics and Computation, 2019, 1(2): 167-185. |
| [14] | Hui Xie, Xuejun Xu. Domain Decomposition Preconditioners for Mixed Finite-Element Discretization of High-Contrast Elliptic Problems [J]. Communications on Applied Mathematics and Computation, 2019, 1(1): 141-165. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||