Communications on Applied Mathematics and Computation ›› 2025, Vol. 7 ›› Issue (2): 470-484.doi: 10.1007/s42967-023-00343-0
Previous Articles Next Articles
Shangyou Zhang1, Zhimin Zhang2
Received:
2023-05-25
Revised:
2023-10-03
Accepted:
2023-10-07
Online:
2025-06-20
Published:
2025-04-21
CLC Number:
Shangyou Zhang, Zhimin Zhang. A Locking-Free and Reduction-Free Conforming Finite Element Method for the Reissner-Mindlin Plate on Rectangular Meshes[J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 470-484.
1. Arnold, D.N., Brezzi, F., Falk, R.S., Marini, L.D.: Locking-free Reissner-Mindlin elements without reduced integration. Comput. Methods Appl. Mech. Eng. 196(37/38/39/40), 3660–3671 (2007) 2. Arnold, D.N., Brezzi, F., Marini, D.: A family of discontinuous Galerkin finite elements for the Reissner-Mindlin plate. J. Sci. Comput. 22, 25–45 (2005) 3. Arnold, D.N., Falk, R.S.: A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26, 1276–1290 (1989) 4. Bathe, K.-J., Brezzi, F.: On the convergence of a four-node plate bending element based on MindlinReissner plate theory and a mixed interpolation. In: The Mathematics of Finite Elements and Applications. V (Uxbridge, 1984), pp. 491–503. Academic Press, London (1985) 5. Bathe, K.-J., Brezzi, F.: A simplified analysis of two plate bending elements—the MITC4 and MITC9 elements. In: Numerical Techniques for Engineering Analysis and Design, vol. 1. Martinus Nijhoff, Amsterdam (1987) 6. Bathe, K.-J., Brezzi, F., Cho, S.W.: The MITC7 and MITC9 plate bending elements. Comput. Struct. 32, 797–841 (1989) 7. Bathe, K.-J., Dvorkin, E.N.: A four-node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation. Int. J. Numer. Methods Eng. 21, 367–383 (1985) 8. Bathe, K.-J., Dvorkin, E.N.: A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. 22, 697–722 (1986) 9. Beirao da Veiga, L., Buffa, A., Lovadina, C., Martinelli, M., Sangalli, G.: An isogeometric method for the Reissner-Mindlin plate bending problem. Comput. Methods Appl. Mech. Eng. 209(212), 45–53 (2012) 10. Brezzi, F., Fortin, M., Stenberg, R.: Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Math. Models Methods Appl. Sci. 1(2), 125–151 (1991) 11. Durán, R., Hernández, E., Hervella-Nieto, L., Liberman, E., Rodríguez, R.: Error estimates for low-order isoparametric quadrilateral finite elements for plates. SIAM J. Numer. Anal. 41, 1751–1772 (2003) 12. Durán, R., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J.: Approximation of the vibration modes of a plate by Reissner-Mindlin equations. Math. Comp. 68(228), 1447–1463 (1999) 13. Durán, R., Liberman, E.: On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comp. 58(198), 561–573 (1992) 14. Durán, R., Liberman, E.: On the convergence of a triangular mixed finite element method for ReissnerMindlin plates. Math. Models Methods Appl. Sci. 6, 339–352 (1996) 15. Falk, R.S., Tu, T.: Locking-free finite elements for the Reissner-Mindlin plate. Math. Comp. 69(231), 911–928 (2000) 16. Hansbo, P., Heintz, D., Larson, M.: A finite element method with discontinuous rotations for the Mindlin-Reissner plate model. Comput. Methods Appl. Mech. Eng. 200, 638–648 (2011) 17. Hu, J., Huang, Y., Zhang, S.: The lowest order differentiable finite element on rectangular grids. SIAM Num. Anal. 49(4), 1350–1368 (2011) 18. Hu, J., Jiang, L., Shi, Z.: New a posteriori error estimate and quasi-optimal convergence of the adaptive nonconforming Wilson element. J. Comput. Appl. Math. 265, 173–186 (2014) 19. Hu, J., Ming, P., Shi, Z.: Nonconforming quadrilateral rotated Q1 element for Reissner-Mindlin plate. J. Comput. Math. 21, 25–32 (2003) 20. Hu, J., Shi, Z.-C.: On the convergence of Weissman-Taylor element for Reissner-Mindlin plate. Int. J. Numer. Anal. Model. 1(1), 65–73 (2004) 21. Hu, J., Shi, Z.-C.: Two lower order nonconforming rectangular elements for the Reissner-Mindlin plate. Math. Comp. 76(260), 1771–1786 (2007) 22. Hu, J., Shi, Z.-C: Error analysis of quadrilateral Wilson element for Reissner-Mindlin plate. Comput. Methods Appl. Mech. Eng. 197(6/7/8), 464–475 (2008) 23. Hu, J., Shi, Z.-C.: Two lower order nonconforming quadrilateral elements for the Reissner-Mindlin plate. Sci. China Ser. A 51(11), 2097–2114 (2008) 24. Hu, J., Shi, Z.-C.: Analysis for quadrilateral MITC elements for the Reissner-Mindlin plate problem. Math. Comp. 78(266), 673–711 (2009) 25. Hu, J., Shi, Z.-C.: A new a posteriori error estimate for the Morley element. Numer. Math. 112(1), 25–40 (2009) 26. Hu, J., Shi, Z.-C.: Analysis of nonconforming rotated Q1 element for the Reissner-Mindlin plate problem. Industrial and Applied Mathematics in China, 101–111, Ser. Contemp. Appl. Math. CAM, 10, Higher Ed. Press, Beijing (2009) 27. Hu, J., Shi, Z.-C.: The best L2 norm error estimate of lower order finite element methods for the fourth order problem. J. Comput. Math. 30(5), 449–460 (2012) 28. Hu, J., Shi, Z.-C.: A lower bound of the L2 norm error estimate for the Adini element of the biharmonic equation. SIAM J. Numer. Anal. 51(5), 2651–2659 (2013) 29. Hu, J., Shi, Z.-C.: Constrained nonconforming rotated Q1 element methods for the Reissner-Mindlin plate problem. Math. Numer. Sin. 38(3), 325–340 (2016) 30. Hu, J., Shi, Z.-C., Xu, J.: Convergence and optimality of the adaptive Morley element method. Numer. Math. 121(4), 731–752 (2012) 31. Hu, J., Zhang, S.: The minimal conforming Hk finite element spaces on Rn rectangular grids. Math. Comp. 84(292), 563–579 (2015) 32. Huang, J., Guo, L., Shi, Z.-C.: Vibration analysis of Kirchhoff plates by the Morley element method. J. Comput. Appl. Math. 213(1), 14–34 (2008) 33. Huang, Y., Zhang, S.: A lowest order divergence-free finite element on rectangular grids. Front. Math. China 6(2), 253–270 (2011) 34. Huang, Y., Zhang, S.: Supercloseness of the divergence-free finite element solutions on rectangular grids. Commun. Math. Stat. 1, 143–162 (2013) 35. Hughes, T.J.R., Tezuyar, T.E.: Finite elements based upon Mindlin plate theory with particular reference to the four node blinear isoparamtric element. J. Appl. Mech. Eng. 48, 587–598 (1981) 36. Lai, J., Huang, J., Shi, Z.-C.: A lumped mass finite element method for vibration analysis of elastic plate-plate structures. Sci. China Math. 53(6), 1453–1474 (2010) 37. Li, H., Ming, P., Shi, Z.-C.: The quadratic Specht triangle. J. Comput. Math. 38(1), 103–124 (2020) 38. Lovadina, C., Marini, D.: Nonconforming locking-free finite elements for Reissner-Mindlin plates. Comput. Methods Appl. Mech. Eng. 195, 3448–3460 (2006) 39. Mao, S., Nicaise, S., Shi, Z.-C.: Error estimates of Morley triangular element satisfying the maximal angle condition. Int. J. Numer. Anal. Model. 7(4), 639–655 (2010) 40. Mao, S., Shi, Z.-C.: High accuracy analysis of two nonconforming plate elements. Numer. Math. 111(3), 407–443 (2009) 41. Ming, P., Shi, Z.-C.: Nonconforming rotated Q1 element for Reissner-Mindlin plate. Math. Models Methods Appl. Sci. 11, 1311–1342 (2001) 42. Ming, P., Shi, Z.-C.: Two nonconforming quadrilateral elements for the Reissner-Mindlin plate. Math. Models Methods Appl. Sci. 15(10), 1503–1517 (2005) 43. Ming, P., Shi, Z.-C.: Analysis of some low order quadrilateral Reissner-Mindlin plate elements. Math. Comp. 75(255), 1043–1065 (2006) 44. Perugia, I., Scapolla, T.: Optimal rectangular MITC finite elements for Reissner-Mindlin plates. Numer. Methods Partial Differential Equations 13(5), 575–585 (1997) 45. Scott, L.R., Zhang, S.: Higher-dimensional nonnested multigrid methods. Math. Comp. 58(198), 457–466 (1992) 46. Shi, Z.-C.: On the convergence of the incomplete biquadratic nonconforming plate element. Math. Numer. Sinica 8(1), 53–62 (1986) 47. Shi, Z.-C.: Convergence of the TRUNC plate element. Comput. Methods Appl. Mech. Eng. 62(1), 71–88 (1987) 48. Shi, Z.-C.: The space of shape functions of an energy-orthogonal plate element. J. China Univ. Sci. Tech. 20(2), 127–131 (1990) 49. Shi, Z.-C.: Error estimates for the Morley element. Math. Numer. Sinica 12(2), 113–118 (1990) 50. Shi, Z., Chen, Q.: An efficient rectangular plate element. Sci. China Ser. A 44(2), 145–158 (2001) 51. Shi, Z.-C., Xie, Z.-H.: Substructure preconditioners for nonconforming plate elements. J. Comput. Math. 16(4), 289–304 (1998) 52. Shi, Z.-C., Xu, X.: A V-cycle multigrid method for TRUNC plate element. Comput. Methods Appl. Mech. Eng. 188(1/2/3), 483–493 (2000) 53. Shi, Z.-C., Xu, X.-J.: The mortar element method for a nonlinear biharmonic equation. J. Comput. Math. 23(5), 537–560 (2005) 54. Stenberg, R., Suri, M.: An hp error analysis of MITC plate elements. SIAM J. Numer. Anal. 34, 544–568 (1997) 55. Wang, M., Shi, Z.-C., Xu, J.: Some n-rectangle nonconforming elements for fourth order elliptic equations. J. Comput. Math. 25(4), 408–420 (2007) 56. Ye, X.: A rectangular element for the Reissner-Mindlin plate. Numer. Methods Partial Differential Equations 16(2), 184–193 (2000) 57. Ye, X., Zhang, S., Zhang, Z.: A locking-free weak Galerkin finite element method for Reissner-Mindlin plate on polygonal meshes. Comput. Math. Appl. 80(5), 906–916 (2020) 58. Zhang, S.: A family of Qk+1,k×Qk,k+1 divergence-free finite elements on rectangular grids. SIAM J. Numer. Anal. 47, 2090–2107 (2009) 59. Zhang, S.: On the full C1-Qk finite element spaces on rectangles and cuboids. Adv. Appl. Math. Mech. 2, 701–721 (2010) 60. Zhang, S.: Robust Falk-Neilan finite elements for the Reissner-Mindlin plate. Commun. Appl. Math. Comput. 5, 1697–1712 (2023) |
[1] | Shangyou Zhang. Conforming P3 Divergence-Free Finite Elements for the Stokes Equations on Subquadrilateral Triangular Meshes [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 426-441. |
[2] | Xiu Ye, Shangyou Zhang. Constructing a CDG Finite Element with Order Two Superconvergence on Rectangular Meshes [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 411-425. |
[3] | Shipeng Mao, Jiaao Sun. Error Estimates of Finite Element Method for the Incompressible Ferrohydrodynamics Equations [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 485-535. |
[4] | Qigang Liang, Wei Wang, Xuejun Xu. A Domain Decomposition Method for Nonconforming Finite Element Approximations of Eigenvalue Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 606-636. |
[5] | Xiaoying Dai, Yunyun Du, Fang Liu, Aihui Zhou. An Augmented Two-Scale Finite Element Method for Eigenvalue Problems [J]. Communications on Applied Mathematics and Computation, 2025, 7(2): 663-688. |
[6] | Min Cao, Yuan Li. Optimal Error Analysis of Linearized Crank-Nicolson Finite Element Scheme for the Time-Dependent Penetrative Convection Problem [J]. Communications on Applied Mathematics and Computation, 2025, 7(1): 264-288. |
[7] | Lin Mu, Xiu Ye, Shangyou Zhang, Peng Zhu. A DG Method for the Stokes Equations on Tensor Product Meshes with [Pk]d-Pk-1 Element [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2431-2454. |
[8] | Baiying Dong, Zhilin Li, Juan Ruiz-álvarez. A Stable FE-FD Method for Anisotropic Parabolic PDEs with Moving Interfaces [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 992-1012. |
[9] | Shangyou Zhang. Robust Falk-Neilan Finite Elements for the Reissner-Mindlin Plate [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1697-1712. |
[10] | Xiu Ye, Shangyou Zhang. Four-Order Superconvergent Weak Galerkin Methods for the Biharmonic Equation on Triangular Meshes [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1323-1338. |
[11] | Jean-Luc Guermond, Bojan Popov, Laura Saavedra. Second-Order Invariant Domain Preserving ALE Approximation of Euler Equations [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 923-945. |
[12] | Mohammed Homod Hashim, Akil J. Harfash. Finite Element Analysis of Attraction-Repulsion Chemotaxis System. Part II: Time Convergence, Error Analysis and Numerical Results [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 1057-1104. |
[13] | Mohammed Homod Hashim, Akil J. Harfash. Finite Element Analysis of Attraction-Repulsion Chemotaxis System. Part I: Space Convergence [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 1011-1056. |
[14] | Ohannes A. Karakashian, Michael M. Wise. A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear, Dispersive Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 823-854. |
[15] | Ahmed Al-Taweel, Yinlin Dong, Saqib Hussain, Xiaoshen Wang. A Weak Galerkin Harmonic Finite Element Method for Laplace Equation [J]. Communications on Applied Mathematics and Computation, 2021, 3(3): 527-544. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||