1. Arnold, D. N., Qin, J.: Quadratic velocity/linear pressure Stokes elements. In: Vichnevetsky, R., Steplemen, R.S. (eds.) Advances in Computer Methods for Partial Differential Equations VII (1992) 2. Fabien, M., Guzman, J., Neilan, M., Zytoon, A.: Low-order divergence-free approximations for the Stokes problem on Worsey-Farin and Powell-Sabin splits. Comput. Methods Appl. Mech. Eng. 390, 21 (2022). (Paper No. 114444) 3. Falk, R., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51(2), 1308–1326 (2013) 4. Guzman, J., Neilan, M.: Conforming and divergence-free Stokes elements on general triangular meshes. Math. Comput. 83(285), 15–36 (2014) 5. Guzman, J., Neilan, M.: Conforming and divergence-free Stokes elements in three dimensions. IMA J. Numer. Anal. 34(4), 1489–1508 (2014) 6. Guzman, J., Neilan, M.: Inf-sup stable finite elements on barycentric refinements producing divergence-free approximations in arbitrary dimensions. SIAM J. Numer. Anal. 56(5), 2826–2844 (2018) 7. Huang, J., Zhang, S.: A divergence-free finite element method for a type of 3D Maxwell equations. Appl. Numer. Math. 62(6), 802–813 (2012) 8. Huang, Y., Zhang, S.: A lowest order divergence-free finite element on rectangular grids. Front. Math. China 6(2), 253–270 (2011) 9. Huang, Y., Zhang, S.: Supercloseness of the divergence-free finite element solutions on rectangular grids. Commun. Math. Stat. 1(2), 143–162 (2013) 10. Kean, K., Neilan, M., Schneier, M.: The Scott-Vogelius method for the Stokes problem on anisotropic meshes. Int. J. Numer. Anal. Model. 19(2/3), 157–174 (2022) 11. Neilan, M.: Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comput. 84(295), 2059–2081 (2015) 12. Neilan, M., Otus, B.: Divergence-free Scott-Vogelius elements on curved domains. SIAM J. Numer. Anal. 59(2), 1090–1116 (2021) 13. Neilan, M., Sap, D.: Stokes elements on cubic meshes yielding divergence-free approximations. Calcolo 53(3), 263–283 (2016) 14. Qin, J.: On the convergence of some low order mixed finite elements for incompressible fluids. Thesis. Pennsylvania State University (1994) 15. Qin, J., Zhang, S.: Stability and approximability of the P1-P0 element for Stokes equations. Int. J. Numer. Methods Fluids 54, 497–515 (2007) 16. Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Model. Math. Anal. Numer. 19, 111–143 (1985) 17. Scott, L.R., Vogelius, M.: Conforming Finite Element Methods for Incompressible and Nearly Incompressible Continua. In: Lectures in Appl. Math., vol. 22, pp. 221–244 (1985) 18. Scott, L.R., Zhang, S.: Higher-dimensional nonnested multigrid methods. Math. Comput. 58(198), 457– 466 (1992) 19. Xu, X., Zhang, S.: A new divergence-free interpolation operator with applications to the Darcy-StokesBrinkman equations. SIAM J. Sci. Comput. 32(2), 855–874 (2010) 20. Ye, X., Zhang, S.: A numerical scheme with divergence free H-div triangular finite element for the Stokes equations. Appl. Numer. Math. 167, 211–217 (2021) 21. Zhang, S.: A new family of stable mixed finite elements for 3D Stokes equations. Math. Comput. 74(250), 543–554 (2005) 22. Zhang, S.: On the P1 Powell-Sabin divergence-free finite element for the Stokes equations. J. Comput. Math. 26, 456–470 (2008) 23. Zhang, S.: A family of Qk + 1, k×Qk, k + 1 divergence-free finite elements on rectangular grids. SIAM J. Numer. Anal. 47, 2090–2107 (2009) 24. Zhang, S.: Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids. Calcolo 48(3), 211–244 (2011) 25. Zhang, S.: Divergence-free finite elements on tetrahedral grids for k ≥ 6. Math. Comput. 80, 669–695 (2011) 26. Zhang, S.: A P4 bubble enriched P3 divergence-free finite element on triangular grids. Comput. Math. Appl. 74(11), 2710–2722 (2017) |