1. Babuska, I., Osborn, J.E.: Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52(186), 275–297 (1989) 2. Babuska, I., Osborn, J.E.: Eigenvalue problems. In: Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991) 3. Bao, W.: The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics. Master Review, Lecture Note Series, vol. 9. IMS, NUS (2007) 4. Bao, W., Du, Q.: Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25, 1674–1697 (2004) 5. Cancès, E., Chakir, R., He, L., Maday, Y.: Two-grid methods for a class of nonlinear elliptic eigenvalue problems. IMA J. Numer. Anal. 38, 605–645 (2018) 6. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45, 90–117 (2010) 7. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of the planewave discretization of some orbitalfree and Kohn-Sham models. Math. Model. Numer. Anal. 46, 341–388 (2012) 8. Cancès, E., Defranceschi, M., Kutzelnigg, W., Le Bris, C., Maday, Y.: Computational quantum chemistry: a primer. In: Ciarlet, P.G., Le Bris, C. (eds.) Handbook of Numerical Analysis, Volume X: Special Volume: Computational Chemistry, pp. 3–270. North-Holland, Amsterdam (2003) 9. Chen, H., Gong, X., He, L., Yang, Z., Zhou, A.: Numerical analysis of finite dimensional approximations of Kohn-Sham models. Adv. Comput. Math. 38, 225–256 (2013) 10. Chen, H., Gong, X., Zhou, A.: Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model. Math. Methods Appl. Sci. 33, 1723–1742 (2010) 11. Chen, H., He, L., Zhou, A.: Finite element approximations of nonlinear eigenvalue problems in quantum physics. Comput. Methods Appl. Mech. Eng. 200, 1846–1865 (2011) 12. Chen, H., Liu, F., Zhou, A.: A two-scale higher-order finite element discretization for Schrödinger equation. J. Comput. Math. 27, 315–337 (2009) 13. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) 14. Dai, X., Zhou, A.: Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46, 295–324 (2008) 15. Dauge, M.: Elliptic boundary value problems on corner domains. In: Lecture Notes in Mathematics, vol. 1341. Springer, Berlin (1988) 16. Gao, X., Liu, F., Zhou, A.: Three-scale finite element eigenvalue discretizations. BIT 48(3), 533–562 (2008) 17. Gong, X., Shen, L., Zhou, A.: Finite element approximations for Schrödinger equations with applications to electronic structure computations. J. Comput. Math. 26, 1–14 (2008) 18. Hou, P., Liu, F.: Two-scale finite element discretizations for nonlinear eigenvalue problems in quantum physics. Adv. Comput. Math. 47, 59 (2021) 19. Hu, G., Xie, H., Xu, F.: A multilevel correction adaptive finite element method for Kohn-Sham equation. J. Comput. Phys. 355, 436–449 (2018) 20. Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59, 2037–2048 (2016) 21. Lieb, E.H.: Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981) 22. Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comput. 84(291), 71–88 (2015) 23. Lin, Q., Yan, N., Zhou, A.: A sparse finite element method with high accuracy. Part I. Numer. Math. 88(4), 731–742 (2001) 24. Liu, F., Stynes, M., Zhou, A.: Postprocessed two-scale finite element discretizations, part I. SIAM J. Numer. Anal. 49, 1947–1971 (2011) 25. Liu, F., Zhou, A.: Two-scale finite element discretizations for partial differential equations. J. Comput. Math. 24, 373–392 (2006) 26. Liu, F., Zhou, A.: Localizations and parallelizations for two-scale finite element discretizations. Commun. Pure Appl. Anal. 6(3), 757–773 (2007) 27. Liu, F., Zhou, A.: Two-scale Boolean Galerkin discretizations for Fredholm integral equations of the second kind. SIAM J. Numer. Anal. 45, 296–312 (2007) 28. Liu, F., Zhu, J.: Two-scale sparse finite element approximations. Sci. China Math. 59(4), 789–808 (2016) 29. Lyu, T., Shih, T., Liem, C.: Splitting Extrapolation and Combination Technique: a New Technology for Solving Multidimensional Problems in Parallel. Science Press, Beijing (1998) (in Chinese) 30. Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2020) 31. Pflaum, C., Zhou, A.: Error analysis of the combination technique. Numer. Math. 84, 327–350 (1999) 32. Pousin, J., Rappaz, J.: Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69, 213–231 (1994) 33. Wang, Y.A., Carter, E.A.: Orbital-free kinetic-energy density functional theory. In: Schwartz, S.D. (ed) Theoretical Methods in Condensed Phase Chemistry, pp. 117–184. Kluwer, Dordrecht (2000) 34. Xie, H.: An augmented subspace method and its applications. J. Numer. Methods Comput. Appl. 41(3), 23 (2020) (in Chinese) 35. Xie, H., Xie, M.: A multigrid method for the ground state solution of Bose-Einstein condensates. J. Comput. Phys. 19(3), 648–662 (2016) 36. Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70, 17–25 (2001) 37. Xu, Y., Zhou, A.: Fast Boolean approximation methods for solving integral equations in high dimensions. J. Integral Equ. Appl. 16, 83–110 (2004) 38. Zhou, A.: An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates. Nonlinearity 17, 541–550 (2004) 39. Zhou, A.: Finite dimensional approximations for the electronic ground state solution of a molecular system. Math. Methods Appl. Sci. 30, 429–447 (2007) |