Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (2): 1428-1471.doi: 10.1007/s42967-024-00371-4
• ORIGINAL PAPERS • Previous Articles Next Articles
Paula Chen1, Jér?me Darbon1, Tingwei Meng2
Received:
2023-03-13
Revised:
2023-10-03
Accepted:
2023-12-21
Online:
2024-04-29
Published:
2024-04-29
Contact:
Jér?me Darbon,E-mail:jerome_darbon@brown.edu;Paula Chen,E-mail:paula_chen@alumni.brown.edu;Tingwei Meng,E-mail:tingwei@math.ucla.edu
E-mail:jerome_darbon@brown.edu;paula_chen@alumni.brown.edu;tingwei@math.ucla.edu
Supported by:
Paula Chen, Jér?me Darbon, Tingwei Meng. Lax-Oleinik-Type Formulas and Efficient Algorithms for Certain High-Dimensional Optimal Control Problems[J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 1428-1471.
[1] Aĭpanov, S.A., Murzabekov, Z.N.: Analytical solution of a linear quadratic optimal control problem with control value constraints on the value of the control. J. Comput. Syst. Sci. Int. 53, 84-91 (2014). https://doi.org/10.1134/s1064230713060026 [2] Akian, M., Bapat, R., Gaubert, S.: Max-plus algebra. In: Hogben, L. (ed) Handbook of Linear Algebra, vol. 39, pp. 10-14. Chapman and Hall/CRC, Boca Raton (2006) [3] Akian, M., Gaubert, S., Lakhoua, A.: The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis. SIAM J. Control. Optim. 47(2), 817-848 (2008) [4] Alla, A., Falcone, M., Saluzzi, L.: An efficient DP algorithm on a tree-structure for finite horizon optimal control problems. SIAM J. Sci. Comput. 41(4), A2384-A2406 (2019) [5] Alla, A., Falcone, M., Volkwein, S.: Error analysis for POD approximations of infinite horizon problems via the dynamic programming approach. SIAM J. Control. Optim. 55(5), 3091-3115 (2017) [6] Bachouch, A., Huré, C., Langrené, N., Pham, H.: Deep neural networks algorithms for stochastic control problems on finite horizon: numerical applications. Methodol. Comput. Appl. Probab. 24(1), 143-178 (2022). https://doi.org/10.1007/s11009-019-09767-9 [7] Bansal, S., Tomlin, C.: Deepreach: a deep learning approach to high-dimensional reachability. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 2021, pp. 1817-1824 (2021) [8] Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston (1997). https://doi.org/10.1007/978-0-8176-4755-1 (With appendices by Maurizio Falcone and Pierpaolo Soravia) [9] Bellman, R.E.: Adaptive Control Processes: a Guided Tour. Princeton University Press, Princeton (1961) [10] Bertsekas, D.P.: Reinforcement Learning and Optimal Control. Athena Scientific, Belmont (2019) [11] Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.: An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman equations. J. Sci. Comput. 55(3), 575-605 (2013) [12] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1-122 (2011). https://doi.org/10.1561/2200000016 [13] Burachik, R.S., Kaya, C.Y., Majeed, S.N.: A duality approach for solving control-constrained linear-quadratic optimal control problems. SIAM J. Control. Optim. 52(3), 1423-1456 (2014). https://doi.org/10.1137/130910221 [14] Cannon, M., Liao, W., Kouvaritakis, B.: Efficient MPC optimization using Pontryagin’s minimum principle. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5459-5464 (2006). https://doi.org/10.1109/CDC.2006.377753 [15] Chen, J., Zhan, W., Tomizuka, M.: Constrained iterative LQR for on-road autonomous driving motion planning. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1-7 (2017). https://doi.org/10.1109/ITSC.2017.8317745 [16] Chen, J., Zhan, W., Tomizuka, M.: Autonomous driving motion planning with constrained iterative LQR. IEEE Trans. Intell. Veh. 4(2), 244-254 (2019). https://doi.org/10.1109/TIV.2019.2904385 [17] Chen, M., Hu, Q., Fisac, J.F., Akametalu, K., Mackin, C., Tomlin, C.J.: Reachability-based safety and goal satisfaction of unmanned aerial platoons on air highways. J. Guid. Control. Dyn. 40(6), 1360-1373 (2017). https://doi.org/10.2514/1.G000774 [18] Coupechoux, M., Darbon, J., Kèlif, J., Sigelle, M.: Optimal trajectories of a UAV base station using Lagrangian mechanics. In: IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 626-631 (2019) [19] Darbon, J.: On convex finite-dimensional variational methods in imaging sciences and Hamilton-Jacobi equations. SIAM J. Imag. Sci. 8(4), 2268-2293 (2015). https://doi.org/10.1137/130944163 [20] Darbon, J., Dower, P.M., Meng, T.: Neural network architectures using min-plus algebra for solving certain high-dimensional optimal control problems and Hamilton-Jacobi PDEs. Math. Control Signals Syst. 1-44 (2022) [21] Darbon, J., Langlois, G.P., Meng, T.: Overcoming the curse of dimensionality for some Hamilton-Jacobi partial differential equations via neural network architectures. Res. Math. Sci. 7(3), 20 (2020). https://doi.org/10.1007/s40687-020-00215-6 [22] Darbon, J., Meng, T.: On decomposition models in imaging sciences and multi-time Hamilton-Jacobi partial differential equations. SIAM J. Imag. Sci. 13(2), 971-1014 (2020). https://doi.org/10.1137/19M1266332 [23] Darbon, J., Meng, T.: On some neural network architectures that can represent viscosity solutions of certain high dimensional Hamilton-Jacobi partial differential equations. J. Comput. Phys. 425, 109907 (2021). https://doi.org/10.1016/j.jcp.2020.109907 [24] Darbon, J., Meng, T., Resmerita, E.: On Hamilton-Jacobi PDEs and image denoising models with certain nonadditive noise. J. Math. Imaging Vis. 64(4), 408-441 (2022) [25] Darbon, J., Osher, S.: Algorithms for overcoming the curse of dimensionality for certain Hamilton-Jacobi equations arising in control theory and elsewhere. Res. Math. Sci. 3(19), 1-26 (2016). https://doi.org/10.1186/s40687-016-0068-7 [26] Davis, D., Yin, W.: Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions. Math. Oper. Res. 42(3), 783-805 (2017). https://doi.org/10.1287/moor.2016.0827 [27] Delahaye, D., Puechmorel, S., Tsiotras, P., Feron, E.: Mathematical models for aircraft trajectory design: a survey. In: Air Traffic Management and Systems, pp. 205-247. Springer Japan, Tokyo (2014) [28] Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889-916 (2016). https://doi.org/10.1007/s10915-015-0048-x [29] Denk, J., Schmidt, G.: Synthesis of a walking primitive database for a humanoid robot using optimal control techniques. In: Proceedings of IEEE-RAS International Conference on Humanoid Robots, pp. 319-326 (2001) [30] Djeridane, B., Lygeros, J.: Neural approximation of PDE solutions: an application to reachability computations. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 3034-3039 (2006). https://doi.org/10.1109/CDC.2006.377184 [31] Dolgov, S., Kalise, D., Kunisch, K.K.: Tensor decomposition methods for high-dimensional Hamilton-Jacobi-Bellman equations. SIAM J. Sci. Comput. 43(3), A1625-A1650 (2021). https://doi.org/10.1137/19M1305136 [32] Dower, P.M., McEneaney, W.M., Cantoni, M.: Game representations for state constrained continuous time linear regulator problems. arXiv:1904.05552 (2019) [33] Dower, P.M., McEneaney, W.M., Zhang, H.: Max-plus fundamental solution semigroups for optimal control problems. In: 2015 Proceedings of the Conference on Control and Its Applications, pp. 368-375. SIAM (2015) [34] El Khoury, A., Lamiraux, F., Taïx, M.: Optimal motion planning for humanoid robots. In: 2013 IEEE International Conference on Robotics and Automation, pp. 3136-3141 (2013). https://doi.org/10.1109/ICRA.2013.6631013 [35] Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., D’Arpino, C.P., Deits, R., DiCicco, M., Fourie, D., Koolen, T., Marion, P., Posa, M., Valenzuela, A., Yu, K.-T., Shah, J., Iagnemma, K., Tedrake, R., Teller, S.: An architecture for online affordance-based perception and whole-body planning. J. Field Robot. 32(2), 229-254 (2015) [36] Feng, S., Whitman, E., Xinjilefu, X., Atkeson, C.G.: Optimization based full body control for the atlas robot. In: 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 120-127 (2014). https://doi.org/10.1109/HUMANOIDS.2014.7041347 [37] Fleming, W., McEneaney, W.: A max-plus-based algorithm for a Hamilton-Jacobi-Bellman equation of nonlinear filtering. SIAM J. Control. Optim. 38(3), 683-710 (2000). https://doi.org/10.1137/S0363012998332433 [38] Fujiwara, K., Kajita, S., Harada, K., Kaneko, K., Morisawa, M., Kanehiro, F., Nakaoka, S., Hirukawa, H.: An optimal planning of falling motions of a humanoid robot. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 456-462 (2007). https://doi.org/10.1109/IROS.2007.4399327 [39] Garcke, J., Kröner, A.: Suboptimal feedback control of PDEs by solving HJB equations on adaptive sparse grids. J. Sci. Comput. 70(1), 1-28 (2017) [40] Gaubert, S., McEneaney, W., Qu, Z.: Curse of dimensionality reduction in max-plus based approximation methods: theoretical estimates and improved pruning algorithms. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 1054-1061. IEEE (2011) [41] Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., Pironneau, O. (eds) Modeling, Simulation and Optimization for Science and Technology. Computational Methods in Applied Sciences, vol. 34, pp. 59-82. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9054-3_4 [42] Han, J., Jentzen, A., E, W.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115(34), 8505-8510 (2018). https://doi.org/10.1073/pnas.1718942115 [43] Hofer, M., Muehlebach, M., D’Andrea, R.: Application of an approximate model predictive control scheme on an unmanned aerial vehicle. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 2952-2957 (2016). https://doi.org/10.1109/ICRA.2016.7487459 [44] Horowitz, M.B., Damle, A., Burdick, J.W.: Linear Hamilton Jacobi Bellman equations in high dimensions. In: 53rd IEEE Conference on Decision and Control, pp. 5880-5887. IEEE (2014) [45] Hu, C., Shu, C.-W.: A discontinuous Galerkin finite element method for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(2), 666-690 (1999). https://doi.org/10.1137/S1064827598337282 [46] Huré, C., Pham, H., Bachouch, A., Langrené, N.: Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis. SIAM J. Numer. Anal. 59(1), 525-557 (2021). https://doi.org/10.1137/20M1316640 [47] Huré, C., Pham, H., Warin, X.: Deep backward schemes for high-dimensional nonlinear PDEs. Math. Comp. 89(324), 1547-1579 (2020). https://doi.org/10.1090/mcom/3514 [48] Jaddu, H.: Spectral method for constrained linear-quadratic optimal control. Math. Comput. Simul. 58(2), 159-169 (2002). https://doi.org/10.1016/S0378-4754(01)00359-7 [49] Jiang, F., Chou, G., Chen, M., Tomlin, C.J.: Using neural networks to compute approximate and guaranteed feasible Hamilton-Jacobi-Bellman PDE solutions. arXiv:1611.03158 (2016) [50] Jiang, G., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126-2143 (2000). https://doi.org/10.1137/S106482759732455X [51] Jin, L., Li, S., Yu, J., He, J.: Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23-34 (2018). https://doi.org/10.1016/j.neucom.2018.01.002 [52] Jin, P., Zhang, Z., Kevrekidis, I.G., Karniadakis, G.E.: Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks. IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3148734 [53] Jin, P., Zhang, Z., Zhu, A., Tang, Y., Karniadakis, G.E.: SympNets: intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems. Neural Netw. 132, 166-179 (2020). https://doi.org/10.1016/j.neunet.2020.08.017 [54] Kalise, D., Kundu, S., Kunisch, K.: Robust feedback control of nonlinear PDEs by numerical approximation of high-dimensional Hamilton-Jacobi-Isaacs equations. SIAM J. Appl. Dyn. Syst. 19(2), 1496-1524 (2020). https://doi.org/10.1137/19M1262139 [55] Kalise, D., Kunisch, K.: Polynomial approximation of high-dimensional Hamilton-Jacobi-Bellman equations and applications to feedback control of semilinear parabolic PDEs. SIAM J. Sci. Comput. 40(2), A629-A652 (2018) [56] Kang, W., Wilcox, L.C.: Mitigating the curse of dimensionality: sparse grid characteristics method for optimal feedback control and HJB equations. Comput. Optim. Appl. 68(2), 289-315 (2017) [57] Kastner, R., Matai, J., Neuendorffer, S.: Parallel Programming for FPGAs. arXiv:1805.03648v1 (2018) [58] Kim, Y.H., Lewis, F.L., Dawson, D.M.: Intelligent optimal control of robotic manipulators using neural networks. Automatica 36(9), 1355-1364 (2000). https://doi.org/10.1016/S0005-1098(00)00045-5 [59] Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Its Applications. Mathematics and Its Applications, vol. 401. Kluwer Academic Publishers Group, Dordrecht (1997). https://doi.org/10.1007/978-94-015-8901-7 (Translation of ıt Idempotent analysis and its application in optimal control (Russian), “Nauka” Moscow, 1994 [ MR1375021 (97d:49031)], Translated by V. E. Nazaikinskii, With an appendix by Pierre Del Moral) [60] Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T., Marion, P., Tedrake, R.: Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robot. 40(3), 429-455 (2016) [61] Kunisch, K., Volkwein, S., Xie, L.: HJB-POD-based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 3(4), 701-722 (2004) [62] Lambrianides, P., Gong, Q., Venturi, D.: A new scalable algorithm for computational optimal control under uncertainty. J. Comput. Phys. 420, 109710 (2020). https://doi.org/10.1016/j.jcp.2020.109710 [63] Lee, D., Tomlin, C.J.: A computationally efficient Hamilton-Jacobi-based formula for state-constrained optimal control problems. arXiv:2106.13440 (2021) [64] Lee, D., Tomlin, C.J.: A Hopf-Lax formula in Hamilton-Jacobi analysis of reach-avoid problems. IEEE Control Syst. Lett. 5(3), 1055-1060 (2021). https://doi.org/10.1109/LCSYS.2020.3009933 [65] Lewis, F., Dawson, D., Abdallah, C.: Robot Manipulator Control: Theory and Practice. Control Engineering. Marcel Dekker Inc., New York (2004). https://books.google.com/books?id=BDS_PQAACAAJ [66] Li, A., Bansal, S., Giovanis, G., Tolani, V., Tomlin, C., Chen, M.: Generating robust supervision for learning-based visual navigation using Hamilton-Jacobi reachability. In: Bayen, A.M., Jadbabaie, A., Pappas, G., Parrilo, P.A., Recht, B., Tomlin, C., Zeilinger, M. (eds.) Proceedings of the 2nd Conference on Learning for Dynamics and Control, Proceedings of Machine Learning Research, vol. 120, pp. 500-510. PMLR, The Cloud (2020). http://proceedings.mlr.press/v120/li20a.html [67] Li, W., Todorov, E.: Iterative linear quadratic regulator design for nonlinear biological movement systems. In: 2004 International Conference on Informatics in Control, Automation and Robotics, pp. 222-229. Citeseer (2004) [68] Lin, F., Brandt, R.D.: An optimal control approach to robust control of robot manipulators. IEEE Trans. Robot. Automat. 14(1), 69-77 (1998). https://doi.org/10.1109/70.660845 [69] Ma, J., Cheng, Z., Zhang, X., Tomizuka, M., Lee, T.H.: Alternating direction method of multipliers for constrained iterative LQR in autonomous driving. IEEE Trans. Intell. Transp. Syst. 23, 23031-23042 (2022). https://doi.org/10.1109/TITS.2022.3194571 [70] McEneaney, W.: A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs. SIAM J. Control. Optim. 46(4), 1239-1276 (2007). https://doi.org/10.1137/040610830 [71] McEneaney, W.M.: Max-Plus Methods for Nonlinear Control and Estimation. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston (2006) [72] McEneaney, W.M., Deshpande, A., Gaubert, S.: Curse-of-complexity attenuation in the curse-of-dimensionality-free method for HJB PDEs. In: 2008 American Control Conference, pp. 4684-4690. IEEE (2008) [73] McEneaney, W.M., Dower, P.M.: The principle of least action and fundamental solutions of mass-spring and N-body two-point boundary value problems. SIAM J. Control. Optim. 53(5), 2898-2933 (2015) [74] McEneaney, W.M., Kluberg, L.J.: Convergence rate for a curse-of-dimensionality-free method for a class of HJB PDEs. SIAM J. Control. Optim. 48(5), 3052-3079 (2009) [75] Nakamura-Zimmerer, T., Gong, Q., Kang, W.: Adaptive deep learning for high-dimensional Hamilton-Jacobi-Bellman equations. SIAM J. Sci. Comput. 43(2), A1221-A1247 (2021). https://doi.org/10.1137/19M1288802 [76] Nakamura-Zimmerer, T., Gong, Q., Kang, W.: QRnet: optimal regulator design with LQR-augmented neural networks. IEEE Control Syst. Lett. 5(4), 1303-1308 (2021). https://doi.org/10.1109/LCSYS.2020.3034415 [77] Niarchos, K.N., Lygeros, J.: A neural approximation to continuous time reachability computations. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 6313-6318 (2006). https://doi.org/10.1109/CDC.2006.377358 [78] Onken, D., Nurbekyan, L., Li, X., Fung, S.W., Osher, S., Ruthotto, L.: A neural network approach for high-dimensional optimal control applied to multiagent path finding. IEEE Trans. Control Syst. Technol. (2022). https://doi.org/10.1109/TCST.2022.3172872 [79] Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907-922 (1991). https://doi.org/10.1137/0728049 [80] Park, J.H., Han, S., Kwon, W.H.: LQ tracking controls with fixed terminal states and their application to receding horizon controls. Syst. Control Lett. 57(9), 772-777 (2008). https://doi.org/10.1016/j.sysconle.2008.03.006 [81] Parzani, C., Puechmorel, S.: On a Hamilton-Jacobi-Bellman approach for coordinated optimal aircraft trajectories planning. In: CCC 2017 36th Chinese Control Conference (CCC), Dalian, China, pp. 353-358. IEEE (2017). https://doi.org/10.23919/ChiCC.2017.8027369. https://hal-enac.archives-ouvertes.fr/hal-01340565 [82] Prakash, S.K.: Managing HBM’s Bandwidth in Multi-die FPGAs Using Overlay NoCs. Master’s thesis, University of Waterloo (2021) [83] Reisinger, C., Zhang, Y.: Rectified deep neural networks overcome the curse of dimensionality for non-smooth value functions in zero-sum games of nonlinear stiff systems. Anal. Appl. (Singap.) 18(6), 951-999 (2020). https://doi.org/10.1142/S0219530520500116 [84] Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998). https://doi.org/10.1007/978-3-642-02431-3 [85] Royo, V.R., Tomlin, C.: Recursive regression with neural networks: approximating the HJI PDE solution. arXiv:1611.02739 (2016) [86] Rucco, A., Sujit, P.B., Aguiar, A.P., de Sousa, J.B., Pereira, F.L.: Optimal rendezvous trajectory for unmanned aerial-ground vehicles. IEEE Trans. Aerosp. Electron. Syst. 54(2), 834-847 (2018). https://doi.org/10.1109/TAES.2017.2767958 [87] Russo, D.: Adaptation of High Performance and High Capacity Reconfigurable Systems to OpenCL Programming Environments. Master’s thesis, Universitat Politècnica de València (2020) [88] Sideris, A., Bobrow, J.E.: An efficient sequential linear quadratic algorithm for solving nonlinear optimal control problems. In: Proceedings of the 2005, American Control Conference, vol. 4, pp. 2275-2280. IEEE (2005). https://doi.org/10.1109/ACC.2005.1470308 [89] Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339-1364 (2018). https://doi.org/10.1016/j.jcp.2018.08.029 [90] Todorov, E.: Efficient computation of optimal actions. Proc. Natl. Acad. Sci. 106(28), 11478-11483 (2009) [91] Yegorov, I., Dower, P.M.: Perspectives on characteristics based curse-of-dimensionality-free numerical approaches for solving Hamilton-Jacobi equations. Appl. Math. Optim. 83, 1-49 (2021) [92] Zhang, H., Dower, P.M.: A max-plus based fundamental solution for a class of discrete time linear regulator problems. Linear Algebra Appl. 471, 693-729 (2015) [93] Zhou, M., Han, J., Lu, J.: Actor-critic method for high dimensional static Hamilton-Jacobi-Bellman partial differential equations based on neural networks. SIAM J. Sci. Comput. 43(6), A4043-A4066 (2021). https://doi.org/10.1137/21M1402303 |
[1] | Frederic Y. M. Wan. Growth of RB Population in the Conversion Phase of Chlamydia Life Cycle [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 90-112. |
[2] | Hong Xiong, Maoning Tang, Qingxin Meng. Linear-Quadratic Optimal Control Problems for Mean-Field Stochastic Differential Equation with Lévy Process [J]. Communications on Applied Mathematics and Computation, 2022, 4(4): 1386-1415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||