Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (2): 1472-1489.doi: 10.1007/s42967-024-00394-x
• ORIGINAL PAPERS • Previous Articles Next Articles
Daniil Bochkov1, Frederic Gibou1,2
Received:
2023-02-17
Revised:
2024-02-08
Accepted:
2024-02-11
Online:
2024-05-02
Published:
2024-05-02
Contact:
Daniil Bochkov,E-mail:bochkov.ds@gmail.com;Frederic Gibou,E-mail:fgibou@ucsb.edu
E-mail:bochkov.ds@gmail.com;fgibou@ucsb.edu
Supported by:
Daniil Bochkov, Frederic Gibou. A Non-parametric Gradient-Based Shape Optimization Approach for Solving Inverse Problems in Directed Self-Assembly of Block Copolymers[J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 1472-1489.
[1] Arias, V., Bochkov, D., Gibou, F.: Poisson equations in irregular domains with Robin boundary conditions-solver with second-order accurate gradients. J. Comput. Phys. 365, 1-6 (2018) [2] Bayat, E., Egan, R., Bochkov, D., Sauret, A., Gibou, F.: A sharp numerical method for the simulation of Stefan problems with convective effects. J. Comput. Phys. 471, 111627 (2022) [3] Bertelli, L., Chandrasekaran, S., Gibou, F., Manjunath, B.: On the length and area regularization for multiphase level set segmentation. Int. J. Comput. Vision 90, 267-282 (2010) [4] Bertelli, L., Sumengen, B., Manjunath, B., Gibou, F.: A variational framework for multiregion pairwise-similarity-based image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1400-1414 (2008) [5] Bita, I., Yang, J.K., Jung, Y.S., Ross, C.A., Thomas, E.L., Berggren, K.K.: Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 321(5891), 939-943 (2008) [6] Bochkov, D., Bagaric, I., Ouaknin, G., Gibou, F.: Equilibrium of free surfaces and nanoparticles in self-consistent field theory of block copolymers. arXiv:2112.08660 (2021) [7] Bochkov, D., Gibou, F.: Solving Poisson-type equations with Robin boundary conditions on piecewise smooth interfaces. J. Comput. Phys. 376, 1156-1198 (2019) [8] Bochkov, D., Gibou, F.: PDE-based multidimensional extrapolation of scalar fields over interfaces with kinks and high curvatures. SIAM J. Sci. Comput. 42(4), 2344-2359 (2020) [9] Bochkov, D., Gibou, F.: Solving elliptic interface problems with jump conditions on Cartesian grids. J. Comput. Phys. 407, 109269 (2020) [10] Brun, E., Guittet, A., Gibou, F.: A local level-set method using a hash table data structure. J. Comput. Phys. 231(6), 2528-2536 (2012) [11] Burchard, P., Cheng, L.-T., Merriman, B., Osher, S.: Motion of curves in three spatial dimensions using a level set approach. J. Comput. Phys. 170, 720-741 (2001) [12] Burger, M., Osher, S.: A survey on level set methods for inverse problems and optimal design. In: CAM Report (04-02) (in Press) (2004) [13] Caflisch, R.E., Gyure, M.F., Merriman, B., Osher, S., Ratsch, C., Vvedensky, D.D., Zinck, J.J.: Island dynamics and the level set method for epitaxial growth. Appl. Math. Lett. 12, 13 (1999) [14] Chang, Y.-C., Hou, T., Merriman, B., Osher, S.: Eulerian capturing methods based on a level set formulation for incompressible fluid interfaces. J. Comput. Phys. 124, 449-464 (1996) [15] Chen, H., Min, C., Gibou, F.: A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids. J. Sci. Comput. 31, 19-60 (2007) [16] Chen, H., Min, C., Gibou, F.: A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate. J. Comput. Phys. 228(16), 5803-5818 (2009) [17] Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving Stefan problems. J. Comput. Phys. 135, 8-29 (1997) [18] Cheng, L.T., Liu, H., Osher, S.: Computational high-frequency wave propagation using the level set method, with applications to the semi-classical limit of Schrödinger equations. Commun. Math. Sci. 1, 593-621 (2003) [19] Chowdhury, R., Egan, R., Bochkov, D., Gibou, F.: Efficient calculation of fully resolved electrostatics around large biomolecules. J. Comput. Phys. 448, 110718 (2022) [20] Darling, S.: Directing the self-assembly of block copolymers. Prog. Polym. Sci. 32(10), 1152-1204 (2007) [21] Detrixhe, M., Doubeck, M., Moehlis, J., Gibou, F.: A fast Eulerian approach for computation of global isochrons in high dimensions. SIAM J. Appl. Dyn. Syst. 15(3), 1501-1527 (2016) [22] Detrixhe, M., Gibou, F.: Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations. J. Comput. Phys. 322, 199-223 (2016) [23] Detrixhe, M., Gibou, F., Min, C.: A parallel fast sweeping method for the Eikonal equation. J. Comput. Phys. 237, 46-55 (2013) [24] Du Chéné, A., Min, C., Gibou, F.: Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes. J. Sci. Comput. 35, 114-131 (2008) [25] Egan, R., Gibou, F.: Geometric discretization of the multidimensional Dirac delta distribution-application to the Poisson equation with singular source terms. J. Comput. Phys. 346, 71-90 (2017) [26] Egan, R., Gibou, F.: Fast and scalable algorithms for constructing solvent-excluded surfaces of large biomolecules. J. Comput. Phys. 374, 91-120 (2018) [27] Egan, R., Gibou, F.: xGFM: recovering convergence of fluxes in the ghost fluid method. J. Comput. Phys. 409, 109351 (2020) [28] Enright, D., Nguyen, D., Gibou, F., Fedkiw, R.: Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In: Fluids Engineering Division Summer Meeting, 36975, 337-342 (2003) [29] Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457-492 (1999) [30] Fedkiw, R.P., Sapiro, G., Shu, C.-W.: Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher’s contributions. J. Comput. Phys. 185(2), 309-341 (2003) [31] Fredrickson, G.: The Equilibrium Theory of Inhomogeneous Polymers, vol. 134. Oxford University Press, Oxford (2006) [32] Gibou, F., Chen, L., Nguyen, D., Banerjee, S.: A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change. J. Comput. Phys. 222(2), 536-555 (2007) [33] Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19, 183-199 (2003) [34] Gibou, F., Fedkiw, R., Osher, S.: A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82-109 (2018) [35] Gibou, F., Hyde, D., Fedkiw, R.: Sharp interface approaches and deep learning techniques for multiphase flows. J. Comput. Phys. 380, 442-463 (2019) [36] Gibou, F., Min, C.: Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions. J. Comput. Phys. 231(8), 3246-3263 (2012) [37] Gibou, F., Min, C., Fedkiw, R.: High resolution sharp computational methods for elliptic and parabolic problems in complex geometries. J. Sci. Comput. 54, 369-413 (2013) [38] Gibou, F., Ratsch, C., Caflisch, R.: Capture numbers in rate equations and scaling laws for epitaxial growth. Phys. Rev. B 67(15), 155403 (2003) [39] Gibou, F., Ratsch, C., Gyure, M., Chen, S., Caflisch, R.: Rate equations and capture numbers with implicit islands correlations. Phys. Rev. B 63(11), 115401 (2001) [40] Guittet, A., Lepilliez, M., Tanguy, S., Gibou, F.: Solving elliptic problems with discontinuities on irregular domains-the Voronoi interface method. J. Comput. Phys. 298, 747-765 (2015) [41] Guittet, A., Poignard, C., Gibou, F.: A Voronoi interface approach to cell aggregate electropermeabilization. J. Comput. Phys. 332, 143-159 (2017) [42] Hannon, A.F., Ding, Y., Bai, W., Ross, C.A., Alexander-Katz, A.: Optimizing topographical templates for directed self-assembly of block copolymers via inverse design simulations. Nano Lett. 14(1), 318-325 (2014) [43] Hannon, A.F., Gotrik, K.W., Ross, C.A., Alexander-Katz, A.: Inverse design of topographical templates for directed self-assembly of block copolymers. ACS Macro Lett. 2(3), 251-255 (2013) [44] Helgadóttir, Á., Gibou, F.: A Poisson-Boltzmann solver on irregular domains with Neumann or Robin boundary conditions on non-graded adaptive grid. J. Comput. Phys. 230(10), 3830-3848 (2011) [45] Hou, T.Y., Li, Z., Osher, S., Zhao, H.: A hybrid method for moving interface problems with application to the Hele-Shaw flow. J. Comput. Phys. 134(2), 236-252 (1997) [46] Hu, H., Gopinadhan, M., Osuji, C.O.: Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter 10(22), 3867-3889 (2014) [47] Jeong, S.-J., Kim, J.Y., Kim, B.H., Moon, H.-S., Kim, S.O.: Directed self-assembly of block copolymers for next generation nanolithography. Mater. Today 16(12), 468-476 (2013) [48] Jin, S., Osher, S.: A level set method for computing multivalued solutions to quasi-linear hyperbolic equations and Hamilton-Jacobi equations. Commun. Math. Sci. 1(3), 575-591 (2003) [49] Langavant, C.C., Guittet, A., Theillard, M., Temprano-Coleto, F., Gibou, F.: Level-set simulations of soluble surfactant driven flows. J. Comput. Phys. 348, 271-297 (2017) [50] Larios-Cárdenas, L.Á., Gibou, F.: A deep learning approach for the computation of curvature in the level-set method. SIAM J. Sci. Comput. 43(3), 1754-1779 (2021) [51] Larios-Cárdenas, L.Á., Gibou, F.: Error-correcting neural networks for two-dimensional curvature computation in the level-set method. J. Sci. Comput. 93(1), 6 (2022) [52] Latypov, A.: Computational solution of inverse directed self-assembly problem. In: Alternative Lithographic Technologies V, vol. 8680, p. 86800. International Society for Optics and Photonics (2013) [53] Lepilliez, M., Popescu, E.R., Gibou, F., Tanguy, S.: On two-phase flow solvers in irregular domains with contact line. J. Comput. Phys. 321, 1217-1251 (2016) [54] Liu, C.-C., Ramírez-Hernández, A., Han, E., Craig, G.S., Tada, Y., Yoshida, H., Kang, H., Ji, S., Gopalan, P., Pablo, J.J., Nealey, P.F.: Chemical patterns for directed self-assembly of lamellae-forming block copolymers with density multiplication of features. Macromolecules 46(4), 1415-1424 (2013) [55] Losasso, F., Fedkiw, R., Osher, S.: Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 995-1010 (2006) [56] Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. ACM Transactions on Graphics 23(3), 457-462 (2004) [57] Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled SPH and particle level set fluid simulation. IEEE Transactions on Visualization and Computer Graphics 14(4), 797-804 (2008) [58] Merriman, B., Bence, J., Osher, S.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112, 334-363 (1994) [59] Min, C., Gibou, F.: A second order accurate level set method on non-graded adaptive Cartesian grids. J. Comput. Phys. 225(1), 300-321 (2007) [60] Min, C., Gibou, F.: Geometric integration over irregular domains with application to level-set methods. J. Comput. Phys. 226(2), 1432-1443 (2007) [61] Min, C., Gibou, F.: Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac delta functions. J. Comput. Phys. 227(22), 9686-9695 (2008) [62] Min, C., Gibou, F., Ceniceros, H.D.: A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids. J. Comput. Phys. 218(1), 123-140 (2006) [63] Mirzadeh, M., Gibou, F.: A conservative discretization of the Poisson-Nernst-Planck equations on adaptive Cartesian grids. J. Comput. Phys. 274, 633-653 (2014) [64] Mirzadeh, M., Guittet, A., Burstedde, C., Gibou, F.: Parallel level-set methods on adaptive tree-based grids. J. Comput. Phys. 322, 345-364 (2016) [65] Mirzadeh, M., Theillard, M., Gibou, F.: A second-order discretization of the nonlinear Poisson-Boltzmann equation over irregular geometries using non-graded adaptive Cartesian grids. J. Comput. Phys. 230(5), 2125-2140 (2011) [66] Mistani, P., Guittet, A., Bochkov, D., Schneider, J., Margetis, D., Ratsch, C., Gibou, F.: The island dynamics model on parallel quadtree grids. J. Comput. Phys. 361, 150-166 (2018) [67] Mistani, P., Guittet, A., Poignard, C., Gibou, F.: A parallel Voronoi-based approach for mesoscale simulations of cell aggregate electropermeabilization. J. Comput. Phys. 380, 48-64 (2019) [68] Mulder, W., Osher, S., Sethian, J.: Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100, 209-228 (1992) [69] Ng, Y.T., Chen, H., Min, C., Gibou, F.: Guidelines for Poisson solvers on irregular domains with Dirichlet boundary conditions using the ghost fluid method. J. Sci. Comput. 41, 300-320 (2009) [70] Ng, Y.T., Min, C., Gibou, F.: An efficient fluid-solid coupling algorithm for single-phase flows. J. Comput. Phys. 228(23), 8807-8829 (2009) [71] Nguyen, D., Gibou, F., Fedkiw, R.: A fully conservative ghost fluid method and stiff detonation waves. In: 12th Int. Detonation Symposium, San Diego, CA (2002) [72] Ohta, T., Kawasaki, K.: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621-2632 (1986) [73] Osher, S., Cheng, L.-T., Kang, M., Shim, H., Tsai, Y.-H.: Geometric optics in a phase-space-based level set and Eulerian framework. J. Comput. Phys. 179, 622-648 (2002) [74] Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463-502 (2001) [75] Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces, vol. 153. Springer, New York (2003) [76] Osher, S., Paragios, N.: Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, New York (2003) [77] Osher, S., Santosa, F.: Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171, 272-288 (2001) [78] Osher, S., Sethian, J.A.: F ronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12-49 (1988) [79] Ouaknin, G., Laachi, N., Delaney, K., Fredrickson, G., Gibou, F.: Shape optimization for DSA. In: Alternative Lithographic Technologies VIII, 9777, 97770. International Society for Optics and Photonics (2016) [80] Ouaknin, G., Laachi, N., Delaney, K., Fredrickson, G.H., Gibou, F.: Self-consistent field theory simulations of polymers on arbitrary domains. J. Comput. Phys. 327, 168-185 (2016) [81] Ouaknin, G.Y., Laachi, N., Delaney, K., Fredrickson, G.H., Gibou, F.: Level-set strategy for inverse DSA-lithography. J. Comput. Phys. 375, 1159-1178 (2018) [82] Pakravan, S., Mistani, P.A., Aragon-Calvo, M.A., Gibou, F.: Solving inverse-PDE problems with physics-aware neural networks. J. Comput. Phys. 440, 110414 (2021) [83] Papac, J., Gibou, F., Ratsch, C.: Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions. J. Comput. Phys. 229(3), 875-889 (2010) [84] Papac, J., Helgadottir, A., Ratsch, C., Gibou, F.: A level set approach for diffusion and Stefan-type problems with Robin boundary conditions on quadtree/octree adaptive Cartesian grids. J. Comput. Phys. 233, 241-261 (2013) [85] Papac, J., Margetis, D., Gibou, F., Ratsch, C.: Island-dynamics model for mound formation: effect of a step-edge barrier. Phys. Rev. E 90(2), 022404 (2014) [86] Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410-438 (1999) [87] Petersen, M., Ratsch, C., Caflisch, R.E., Zangwill, A.: A level set approach to reversible epitaxial growth. Phys. Rev. E 64, 061602 (2001) [88] Ratsch, C., Gyure, M., Caflisch, R., Gibou, F., Petersen, M., Kang, M., Garcia, J., Vvedensky, D.: Level-set method for island dynamics in epitaxial growth. Phys. Rev. B 65(19), 195403 (2002) [89] Ruiz, R., Kang, H., Detcheverry, F.A., Dobisz, E., Kercher, D.S., Albrecht, T.R., Pablo, J.J., Nealey, P.F.: Density multiplication and improved lithography by directed block copolymer assembly. Science 321(5891), 936-939 (2008) [90] Rycroft, C.H., Gibou, F.: Simulations of a stretching bar using a plasticity model from the shear transformation zone theory. J. Comput. Phys. 231(5), 2155-2179 (2012) [91] Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999) [92] Shim, S., Shin, Y.: Mask optimization for directed self-assembly lithography: inverse DSA and inverse lithography. In: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 83-88. IEEE (2016) [93] Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 439-456 (2003) [94] Sussman, M., Fatemi, E., Smereka, P., Osher, S.: An improved level set method for incompressible two-phase flows. Comput. Fluids 27, 663-680 (1998) [95] Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146-159 (1994) [96] Theillard, M., Djodom, L.F., Vié, J.-L., Gibou, F.: A second-order sharp numerical method for solving the linear elasticity equations on irregular domains and adaptive grids-application to shape optimization. J. Comput. Phys. 233, 430-448 (2013) [97] Theillard, M., Gibou, F., Pollock, T.: A sharp computational method for the simulation of the solidification of binary alloys. J. Sci. Comput. 63, 330-354 (2015) [98] Theillard, M., Gibou, F., Saintillan, D.: Sharp numerical simulation of incompressible two-phase flows. J. Comput. Phys. 391, 91-118 (2019) [99] Tiron, R., Gharbi, A., Argoud, M., Chevalier, X., Belledent, J., Barros, P.P., Servin, I., Navarro, C., Cunge, G., Barnola, S., Pain, L., Asai, M., Pieczulewski, C.: The potential of block copolymer’s directed self-assembly for contact hole shrink and contact multiplication. In: Alternative Lithographic Technologies V, vol. 8680, p. 868012. International Society for Optics and Photonics (2013) [100] Tsai, Y.-H., Osher, S.: Level set methods and their applications in image science. Commun. Math. Sci. 1(4), 623-656 (2003) [101] Zhao, H.-K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179-195 (1996) [102] Zhao, H.-K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: 1st IEEE Wrkshp. on Variational and Level Set Meth., 8th Int. Conf. on Comput. Vis., pp. 194-202. IEEE (2001) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||