Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (3): 1551-1574.doi: 10.1007/s42967-023-00250-4
• ORIGINAL PAPERS • Previous Articles Next Articles
Mikhail Shashkov2, Konstantin Lipnikov1
Received:
2022-09-08
Revised:
2022-11-21
Accepted:
2022-12-29
Published:
2024-12-20
Contact:
Mikhail Shashkov,shashkov@lanl.gov;Konstantin Lipnikov,lipnikov@lanl.gov
E-mail:shashkov@lanl.gov;lipnikov@lanl.gov
Supported by:
CLC Number:
Mikhail Shashkov, Konstantin Lipnikov. Remapping Between Meshes with Isoparametric Cells: a Case Study[J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1551-1574.
1. Anderson, R., Dobrev, V., Kolev, T., Rieben, R.:Monotonicity in high-order curvilinear finite element arbitrary Lagrangian-Eulerian remap. Int. J. Numer. Meth. Fluids 77, 249-273 (2015) 2. Anderson, R., Dobrev, V., Kolev, T., Rieben, R., Tomov, V.:High-order multi-material ALE hydrodynamics. SIAM J. Sci. Comput. 40(1), B32-B58 (2018) 3. Arnold, D.N., Awanou, G.:The serendipity family of finite elements. Found. Comput. Math. 11, 337-344 (2011) 4. Barnhill, R., Farin, G., Jordan, M., Piper, B.:Surface/surface intersection. Comput. Aided Geom. Des. 4(1/2), 3-16 (1987) 5. Boutin, B., Deriaz, E., Hoch, P., Navaro, P.:Extension of ALE methodology to unstructured conical meshes. ESAIM:Procs. 22, 31-55 (2011) 6. Dobrev, V., Kolev, T., Rieben, R.:High-order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 34(5), 606-641 (2012) 7. Dukowicz, J., Kodis, J.:Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations. SIAM J. Stat. Comput. 8, 305-321 (1987) 8. Ergatoudis, I., Irons, B., Zienkiewicz, O.:Curved, isoparametric, quadrilateral elements for finite element analysis. Int. J. Solids Struct. 4, 31-42 (1968) 9. Gillette, A., Kloefkorn, T.:Trimmed serendipity finite element differential forms. Math. Comput. 88(316), 583-606 (2019) 10. Kenamond, M., Kuzmin, D., Shashkov, M.:Intersection-distribution-based remapping between arbitrary meshes for staggered multi-material arbitrary Lagrangian-Eulerian hydrodynamics. J. Comput. Phys. 429, 110014 (2021) 11. Lieberman, E., Liu, X., Morgan, N., Lusher, D., Burton, D.:A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for solid dynamics. Comput. Methods Appl. Mech. Engrg. 353, 467-490 (2019) 12. Lipnikov, K., Morgan, N.:Conservative high-order discontinuous Galerkin remap scheme on curvilinear polyhedral meshes. J. Comput. Phys. 420, 109712 (2020) 13. Lipnikov, K., Shashkov, M.:Conservative high-order data transfer method on generalized polygonal meshes. Technical Report LA-UR-22-26391, Los Alamos National Laboratory (2022) 14. Loubère, R., Ovadia, J., Abgrall, R.:A Lagrangian discontinuous Galerkin-type method on unstructured meshes to solve hydrodynamics problems. Int. J. Numer. Meth. Fluids 44, 645-663 (2004) 15. Margolin, L., Shashkov, M.:Second-order sign-preserving conservative interpolation (remapping) on general grids. J. Comput. Phys. 184(1), 266-298 (2003) 16. Mosso, S., Burton, D.:A second-order two- and three-dimensional remap method. Technical Report LA-UR-98-5353, Los Alamos National Laboratory (1998) 17. Shashkov, M., Wendroff, B.:The repair paradigm and application to conservation laws. J. Comput. Phys. 198, 265-277 (2004) 18. Vacarro, J., Lipnikov, K.:Applying an oriented divergence theorem to swept face remap. Technical Report LA-UR-22-28731, Los Alamos National Laboratory (2022) 19. Velechovsky, J., Kikinzon, E., Navamita, R., Rakotoarivelo, H., Herring, A., Kenamond, M., Lipnikov, K., Shashkov, M., Garimella, R., Shevitz, D.:Multi-material swept face remapping on polyhedral meshes. J. Comput. Phys. 469, 111553 (2022) 20. Warsaw, S.:Area of intersection of arbitrary polygons. Technical Report UCID-17430, Report of Lawrence Livermore National Laboratory. Available at https://www. osti. gov/servl ets/purl/73099 16 (1977) |
[1] | Jun Zhu, Chi-Wang Shu, Jianxian Qiu. RKDG Methods with Multi-resolution WENO Limiters for Solving Steady-State Problems on Triangular Meshes [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1575-1599. |
[2] | Naren Vohra, Konstantin Lipnikov, Svetlana Tokareva. Second-Order Accurate Structure-Preserving Scheme for Solute Transport on Polygonal Meshes [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1600-1628. |
[3] | Lorenzo Micalizzi, Davide Torlo. A New Efficient Explicit Deferred Correction Framework: Analysis and Applications to Hyperbolic PDEs and Adaptivity [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1629-1664. |
[4] | Walter Boscheri, Raphaël Loubère, Pierre-Henri Maire. An Unconventional Divergence Preserving Finite-Volume Discretization of Lagrangian Ideal MHD [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1665-1719. |
[5] | Zhiwei Gao, Tao Tang, Liang Yan, Tao Zhou. Failure-Informed Adaptive Sampling for PINNs, Part II: Combining with Re-sampling and Subset Simulation [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1720-1741. |
[6] | Saray Busto, Michael Dumbser. A New Class of Simple, General and Efficient Finite Volume Schemes for Overdetermined Thermodynamically Compatible Hyperbolic Systems [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1742-1778. |
[7] | Clayton Little, Charbel Farhat. Projection-Based Dimensional Reduction of Adaptively Refined Nonlinear Models [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1779-1800. |
[8] | Christophe Buet, Bruno Despres, Guillaume Morel. Approximation Properties of Vectorial Exponential Functions [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1801-1831. |
[9] | Vitaly Gyrya, Mikhail Shashkov, Alexei Skurikhin, Svetlana Tokareva. Machine Learning Approaches for the Solution of the Riemann Problem in Fluid Dynamics: a Case Study [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1832-1859. |
[10] | Andrés M. Rueda-Ramírez, Benjamin Bolm, Dmitri Kuzmin, Gregor J. Gassner. Monolithic Convex Limiting for Legendre-Gauss-Lobatto Discontinuous Galerkin Spectral-Element Methods [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1860-1898. |
[11] | Jingcheng Lu, Eitan Tadmor. Revisting High-Resolution Schemes with van Albada Slope Limiter [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1924-1953. |
[12] | Michel Bergmann, Afaf Bouharguane, Angelo Iollo, Alexis Tardieu. High Order ADER-IPDG Methods for the Unsteady Advection-Diffusion Equation [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1954-1977. |
[13] | Janina Bender, Philipp Öffner. Entropy-Conservative Discontinuous Galerkin Methods for the Shallow Water Equations with Uncertainty [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 1978-2010. |
[14] | Alina Chertock, Michael Herty, Arsen S. Iskhakov, Safa Janajra, Alexander Kurganov, Mária Lukáčová-Medvid'ová. New High-Order Numerical Methods for Hyperbolic Systems of Nonlinear PDEs with Uncertainties [J]. Communications on Applied Mathematics and Computation, 2024, 6(3): 2011-2044. |
[15] | Gui-Qiang G. Chen. Two-Dimensional Riemann Problems: Transonic Shock Waves and Free Boundary Problems [J]. Communications on Applied Mathematics and Computation, 2023, 5(3): 1015-1052. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||