1. Aslam, T.:Shock temperature dependent rate law for plastic bonded explosives. J. Appl. Phys. 123, 145901 (2018) 2. Barlow, A., Shashkov, M.J., Maire, P.-H., Rieben, R., Rider, W.:Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows. J. Comput. Phys. 322, 603-665 (2016) 3. Bishop, C.M.:Pattern Recognition and Machine Learning. Springer, Berlin (2006) 4. Burton, D.:Connectivity structures and differencing techniques for staggered-grid free Lagrange hydrodynamics. Tech. Rep. UCRL-JC-110555, Lawrence Livermore National Laboratory, Livermore, CA, 1992 (1992) 5. Burton, D.:Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids. Tech. Rep. CRL-JC-118788, Lawrence Livermore National Laboratory, Livermore, CA, 1992 (1994) 6. Burton, D.:Multidimensional discretization of conservation laws for unstructured polyhedral grids. Tech. Rep. UCRL-JC-118306, Lawrence Livermore National Laboratory, Livermore, CA, 1992 (1994) 7. Burton, D.E.:FLAG:a multi-dimensional, multiple mesh, adaptive free-Lagrange, hydrodynamics code. In:Nuclear Explosives Code Development Conference (1992) 8. Campbell, J., Shashkov, M.:A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172, 739-765 (2001) 9. Caramana, E., Burton, D., Shashkov, M., Whalen, P.:The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys. 146, 227-262 (1998) 10. Fickett, W., Davis, W.:Detonation:Theory and Experiment, Dover Books on Physics. Dover Publications, Minoela (2000) 11. Gramacy, R.B.:Surrogates:Gaussian Process Modeling, Design and Optimization for the Applied Sciences. Chapman Hall/CRC, Boca Raton, Florida (2020) 12. Kenamond, M., Bement, M., Shashkov, M.:Compatible, total energy conserving and symmetry preserving arbitrary Lagrangian-Eulerian hydrodynamics in 2D rz-cylindrical coordinates. J. Comput. Phys. 268, 154-185 (2014) 13. Kennedy, M.C., O'Hagan, A.:Bayesian calibration of computer models. J. R. Stat. Soc. Ser. B (Statistical Methodology) 63, 425-464 (2001) 14. Landshoff, R.:A numerical method for treating fluid flow in the presence of shocks. Tech. Rep. LA-1930, Los Alamos National Laboratory, Los Alamos, NM (1955) 15. Lipnikov, K., Shashkov, M.:A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes. J. Comput. Phys. 229, 7911-7941 (2010) 16. Mockus, J., Tiesis, V., Zilinskas, A.:The application of Bayesian methods for seeking the extremum. In:Towards Glob. Optim. North-Holland, Amsterdam (1978) 17. Price, A.:ZND verification tests for reactive burn models in FLAG. Tech. Rep. LA-UR-20-21911, Los Alamos National Laboratory (1990) 18. Prunty, S.:Introduction to Simple Shock Waves in Air. With Numerical Solutions Using Artificial Viscosity. Springer, Berlin (2019) 19. Rasmussen, C.E., Williams, C.K.I.:Gaussian Processes for Machine Learning. Massachusetts Institute of Technology, Cambridge (2006) 20. Schonlau, M., Welch, W.J., Jones, D.R.:Global versus local search in constrained optimization of computer models. Lect. Notes-Monogr. Ser. 34, 11-25 (1998) 21. Toro, E.:Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction. Springer, Berlin (2009) 22. Von Neumann, J., Richtmyer, R.:A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21, 232-237 (1950) 23. Wescott, D., Stewart, B.L., Davis, W.:Equation of state and reaction rate for condensed-phase explosives. J. Appl. Phys. 98, 053514 (2005) 24. Wilkins, M.L.:Use of artificial viscosity in multidimensional fluid dynamic calculations. J. Comput. Phys. 36, 281-303 (1980) |