Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (2): 837-861.doi: 10.1007/s42967-023-00256-y
• ORIGINAL PAPERS • Previous Articles Next Articles
Jane Wu1, Michael Bao1, Xinwei Yao1, Ronald Fedkiw1,2
Received:
2022-10-26
Revised:
2022-10-26
Accepted:
2023-01-28
Online:
2023-03-27
Published:
2023-03-27
Contact:
Jane Wu,E-mail:janehwu@stanford.edu;Michael Bao,E-mail:mikebao@stanford.edu;Xinwei Yao,E-mail:yaodavid@stanford.edu;Ronald Fedkiw,E-mail:fedkiw@cs.stanford.edu
E-mail:janehwu@stanford.edu;mikebao@stanford.edu;yaodavid@stanford.edu;fedkiw@cs.stanford.edu
Supported by:
Jane Wu, Michael Bao, Xinwei Yao, Ronald Fedkiw. Deep Energies for Estimating Three-Dimensional Facial Pose and Expression[J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 837-861.
[1] Aldrian, O., Smith, W.A.: Inverse rendering of faces with a 3D morphable model. IEEE Trans. Pattern. Anal. Mach. Intell. 35(5), 1080-1093 (2013) [2] Bailer, C., Taetz, B., Stricker, D.: Flow fields: dense correspondence fields for highly accurate large displacement optical flow estimation. IEEE Trans. Pattern. Anal. Mach. Intell. 41(8), 1879-1892 (2015) [3] Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92(1), 1-31 (2011) [4] Bao, M., Cong, M., Grabli, S., Fedkiw, R.: High-quality face capture using anatomical muscles. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10794-10803. IEEE (2019) [5] Bhat, K.S., Goldenthal, R., Ye, Y., Mallet, R., Koperwas, M.: High fidelity facial animation capture and retargeting with contours. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 7-14. ACM (2013) [6] Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Comput. Vis. Image Underst. 63(1), 75-104 (1996) [7] Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: European Conference on Computer Vision, pp. 25-36. Springer (2004) [8] Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D Face Alignment problem? (and a dataset of 230,000 3D facial landmarks). In: 2017 IEEE International Conference on Computer Vision, pp. 1021-1030. IEEE (2017) [9] Cao, C., Bradley, D., Zhou, K., Beeler, T.: Real-time high-fidelity facial performance capture. ACM Trans. Gr. (ToG) 34(4), 46 (2015) [10] Cao, C., Weng, Y., Lin, S., Zhou, K.: 3D shape regression for real-time facial animation. ACM Trans. Gr. (TOG) 32(4), 41 (2013) [11] Cao, X., Wei, Y., Wen, F., Sun, J.: Face alignment by explicit shape regression. Int. J. Comput. Vision 107(2), 177-190 (2014) [12] Chen, D., Ren, S., Wei, Y., Cao, X., Sun, J.: Joint cascade face detection and alignment. In: European Conference on Computer Vision, pp. 109-122. Springer (2014) [13] Chen, Y.-L., Wu, H.-T., Shi, F., Tong, X., Chai, J.: Accurate and robust 3D facial capture using a single RGBD camera. In: ICCV'13: Proceedings of the 2013 IEEE International Conference on Computer Vision, pp. 3615-3622. IEEE (2013) [14] Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145-156. ACM Press/Addison-Wesley Publishing Co (2000) [15] Deng, J., Zhou, Y., Cheng, S., Zaferiou, S.: Cascade multi-view hourglass model for robust 3D face alignment. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 399-403. IEEE (2018) [16] Deng, Z., Chiang, P.-Y., Fox, P., Neumann, U.: Animating blendshape faces by cross-mapping motion capture data. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, pp. 43-48. ACM (2006) [17] Dinev, D., Beeler, T., Bradley, D., Bächer, M., Xu, H., Kavan, L.: User-guided lip correction for facial performance capture. Comput. Gr. Forum 37, 93-101 (2018) [18] Dong, X., Yu, S.-I., Weng, X., Wei, S.-E., Yang, Y., Sheikh, Y.: Supervision-by-registration: an unsupervised approach to improve the precision of facial landmark detectors. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 360-368. IEEE (2018) [19] Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: NIPS'16: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 658-666. ACM (2016) [20] Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt, P., Cremers, D., Brox, T.: Flownet: learning optical flow with convolutional networks. In: 2015 IEEE International Conference on Computer Vision, pp. 2758-2766. IEEE (2015) [21] Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3D face reconstruction and dense alignment with position map regression network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 534-551. IEEE (2018) [22] Feng, Z.-H., Kittler, J., Christmas, W., Huber, P., Wu, X.-J.: Dynamic attention-controlled cascaded shape regression exploiting training data augmentation and fuzzy-set sample weighting. arXiv:1611.05396 (2016) [23] Garrido, P., Valgaerts, L., Wu, C., Theobalt, C.: Reconstructing detailed dynamic face geometry from monocular video. ACM Trans. Gr. (ToG) 32(6), 158 (2013) [24] Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414-2423. IEEE (2016) [25] Gerig, T., Morel-Forster, A., Blumer, C., Egger, B., Luthi, M., Schönborn, S., Vetter, T.: Morphable face models-an open framework. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 75-82. IEEE (2018) [26] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2, 2672-2680 (2014) [27] Guo, J.Z., Zhu, X.Y., Lei, Z.: 3DDFA. https://github.com/cleardusk/3DDFA (2018) [28] Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1647-1655. IEEE (2017). http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17 [29] Jackson, A.S., Bulat, A., Argyriou, V., Tzimiropoulos, G.: Large pose 3D face reconstruction from a single image via direct volumetric cnn regression. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1031-1039. IEEE (2017) [30] Jeni, L.A., Cohn, J.F., Kanade, T.: Dense 3D face alignment from 2D video for real-time use. Image Vis. Comput. 58, 13-24 (2017) [31] Jin, X., Tan, X.: Face alignment in-the-wild: a survey. Comput. Vis. Image Underst. 162, 1-22 (2017) [32] Johnson, J., Alahi, A., Li, F.F.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision, pp. 694-711. Springer (2016) [33] Jourabloo, A., Liu, X.: Large-pose face alignment via CNN-based dense 3D model fitting. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4188-419. IEEE (2016) [34] Jourabloo, A., Liu, X.: Pose-invariant face alignment via CNN-based dense 3D model fitting. Int. J. Comput. Vision 124(2), 187-203 (2017) [35] Kazemi, V., Keskin, C., Taylor, J., Kohli, P., Izadi, S.: Real-time face reconstruction from a single depth image. In: 2014 2nd International Conference on 3D Vision, pp. 369-376. IEEE (2014) [36] Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1867-1874 (2014) [37] Kim, H., Zollhöfer, M., Tewari, A., Thies, J., Richardt, C., Theobalt, C.: InverseFaceNet: deep monocular inverse face rendering. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4625-4634 (2018) [38] King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755-1758 (2009) [39] Korshunova, I., Shi, W., Dambre, J., Theis, L.: Fast face-swap using convolutional neural networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3697-3705. IEEE (2017) [40] Lewis, J.P., Anjyo, K., Rhee, T., Zhang, M., Pighin, F.H., Deng, Z.: Practice and theory of blendshape facial models. Eurographics 2014, 199-218 (2014) [41] Li, T.-M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable Monte Carlo ray tracing through edge sampling. ACM Trans. Gr. (ToG) 37(6), 222 (2018) [42] Li, Y., Liu, S., Yang, J., Yang, M.-H.: Generative face completion. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5892-5900. IEEE (2017) [43] Loper, M.: Chumpy autodifferentation library. http://chumpy.org (2014) [44] Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision - ECCV 2014. Lecture Notes in Computer Science, vol. 8695, pp. 154-169. Springer, Cham (2014) [45] Lourakis, M., Argyros, A.A.: Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? In: Tenth IEEE International Conference on Computer Vision (ICCV'05), vol. 2, pp. 1526-1531. IEEE (2005) [46] Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI'81: Proceedings of the 7th International Joint Conference on Artificial Intelligence, vol. 2, pp. 674-679. Morgan Kaufmann Publishers Inc., San Francisco, CA (1981) [47] Ma, W.-C., Jones, A., Chiang, J.-Y., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M., Ouhyoung, M., Debevec, P.: Facial performance synthesis using deformation-driven polynomial displacement maps. ACM Trans. Gr. (TOG) 27(5), 121 (2008) [48] Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5188-5196. IEEE (2015) [49] Markley, F.L., Cheng, Y., Crassidis, J.L., Oshman, Y.: Quaternion averaging. J. Guidance Control Dyn. 30(4), 1193-1196 (2007) [50] Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: European Conference on Computer Vision, pp. 483-499. Springer (2016) [51] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: NIPS 2017 Autodiff Workshop (2017) [52] Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 497-500. ACM (2001) [53] Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: edge-preserving interpolation of correspondences for optical flow. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1164-1172. IEEE (2015) [54] Ruder, S.: An overview of gradient descent optimization algorithms. arXiv:1609.04747 (2016) [55] Sendik, O., Cohen-Or, D.: Deep correlations for texture synthesis. ACM Trans. Gr. (ToG) 36(5), 161 (2017) [56] Sifakis, E., Neverov, I., Fedkiw, R.: Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Gr. (ToG) 24, 417-425 (2005) [57] Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014) [58] Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Proceedings of the 15th European Conference on Computer Vision (ECCV), pp. 536-553. Springer (2018) [59] Tewari, A., Zollhofer, M., Kim, H., Garrido, P., Bernard, F., Perez, P., Theobalt, C.: MoFA: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3735-3744. IEEE (2017) [60] Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2face: real-time face capture and reenactment of RGB videos. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2387-2395. IEEE (2016) [61] Toshev, A., Szegedy, C.: Deeppose: Human pose estimation via deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1653-1660. IEEE (2014) [62] Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9446-9454. IEEE (2018) [63] Wei, S.-E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4724-4732. IEEE (2016) [64] Weise, T., Bouaziz, S., Li, H., Pauly, M.: Realtime performance-based facial animation. ACM Trans. Gr. (ToG) 30, 77 (2011) [65] Wu, C., Bradley, D., Gross, M., Beeler, T.: An anatomically-constrained local deformation model for monocular face capture. ACM Trans. Gr. (ToG) 35(4), 115 (2016) [66] Wu, W., Qian, C., Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look at boundary: a boundary-aware face alignment algorithm. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2129-2138. IEEE (2018) [67] Xing, J., Niu, Z., Huang, J., Hu, W., Zhou, X., Yan, S.: Towards robust and accurate multi-view and partially-occluded face alignment. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 987-1001 (2018) [68] Zadeh, A., Lim, Y.C., Baltrusaitis, T., Morency, L.-P.: Convolutional experts constrained local model for 3D facial landmark detection. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 2519-2528. IEEE (2017) [69] Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. (ToMS) 23(4), 550-560 (1997) [70] Zhu, S., Li, C., Loy, C.C., Tang, X.: Unconstrained face alignment via cascaded compositional learning. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3409-3417. IEEE (2016) [71] Zhu, X., Liu, X., Lei, Z., Li, S.Z.: Face alignment in full pose range: a 3D total solution. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 78-92 (2017) [72] Zollhöfer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T., Pérez, P., Stamminger, M., Nießner, M., Theobalt, C.: State of the art on monocular 3D face reconstruction, tracking, and applications. Comput. Graph. Forum 37, 523-550 (2018) |
[1] | Zhanhong Ye, Xiang Huang, Hongsheng Liu, Bin Dong. Meta-Auto-Decoder: a Meta-Learning-Based Reduced Order Model for Solving Parametric Partial Differential Equations [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 1096-1130. |
[2] | Rémi Abgrall, Maria Han Veiga. Neural Network-Based Limiter with Transfer Learning [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 532-572. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||