[1] Abdulle, A., E, W.N., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1-87 (2012) [2] Babuška, I., Lipton, R.: Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9(1), 373-406 (2011) [3] Babuška, I., Lipton, R., Sinz, P., Stuebner, M.: Multiscale-spectral GFEM and optimal oversampling. Comput. Methods Appl. Mech. Eng. 364, 112960 (2020) [4] Babuška, I., Osborn, J.E.: Can a finite element method perform arbitrarily badly? Math. Comput. 69(230), 443-462 (2000) [5] Babuška, I., Osborn, J.E.: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20(3), 510-536 (1983) [6] Babuška, I., Sauter, S.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392-2423 (1997) [7] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 3. Springer, Berlin (2008) [8] Buhr, A., Smetana, K.: Randomized local model order reduction. SIAM J. Sci. Comput. 40(4), A2120-A2151 (2018) [9] Chen, K., Li, Q., Lu, J., Wright, S.J.: Randomized sampling for basis function construction in generalized finite element methods. Multiscale Model. Simul. 18(2), 1153-1177 (2020) [10] Chen, Y., Hou, T.Y.: Multiscale elliptic PDE upscaling and function approximation via subsampled data. Multiscale Model. Simul. 20(1), 188-219 (2022) [11] Chen, Y., Hou, T.Y., Wang, Y.: Exponential convergence for multiscale linear elliptic PDEs via adaptive edge basis functions. Multiscale Model. Simul. 19(2), 980-1010 (2021) [12] Chen, Y., Hou, T.Y., Wang, Y.: Exponentially convergent multiscale methods for high frequency heterogeneous Helmholtz equations. arXiv:2105.04080 (2021) [13] Chung, E.T., Efendiev, Y., Leung, W.T.: Constraint energy minimizing generalized multiscale finite element method. Comput. Methods Appl. Mech. Eng. 339, 298-319 (2018) [14] Efendiev, Y.R., Hou, T.Y., Wu, X.-H.: Convergence of a nonconforming multiscale finite element method. SIAM J. Numer. Anal. 37(3), 888-910 (2000) [15] Engquist, B., Zhao, H.: Approximate separability of the Green’s function of the Helmholtz equation in the high frequency limit. Commun. Pure Appl. Math. 71(11), 2220-2274 (2018) [16] Fu, S., Chung, E., Li, G.: Edge multiscale methods for elliptic problems with heterogeneous coefficients. J. Comput. Phys. 396, 228-242 (2019) [17] Hauck, M., Peterseim, D.: Super-localization of elliptic multiscale problems. Math. Comput. 92, 981-1003 (2023) [18] Henning, P., Peterseim, D.: Oversampling for the multiscale finite element method. Multiscale Model. Simul. 11(4), 1149-1175 (2013) [19] Hetmaniuk, U., Klawonn, A.: Error estimates for a two-dimensional special finite element method based on component mode synthesis. Electron. Trans. Numer. Anal. 41, 109-132 (2014) [20] Hetmaniuk, U., Lehoucq, R.: A special finite element method based on component mode synthesis. ESAIM: Math. Model. Numer. Anal. 44(3), 401-420 (2010) [21] Hou, T.Y., Liu, P.: Optimal local multi-scale basis functions for linear elliptic equations with rough coefficient. Discret. Contin. Dyn. Syst. 36(8), 4451-4476 (2016) [22] Hou, T.Y., Wu, X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169-189 (1997) [23] Hou, T.Y., Wu, X.-H., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68(227), 913-943 (1999) [24] Hou, T.Y., Zhang, P.: Sparse operator compression of higher-order elliptic operators with rough coefficients. Res. Math. Sci. 4(1), 1-49 (2017) [25] Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.-B.: The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1), 3-24 (1998) [26] Kornhuber, R., Peterseim, D., Yserentant, H.: An analysis of a class of variational multiscale methods based on subspace decomposition. Math. Comput. 87(314), 2765-2774 (2018) [27] Lafontaine, D., Spence, E.A., Wunsch, J.: For most frequencies, strong trapping has a weak effect in frequency-domain scattering. Commun. Pure Appl. Math. 74(10), 2025-2063 (2021) [28] Li, G.: On the convergence rates of GMsFEMs for heterogeneous elliptic problems without oversampling techniques. Multiscale Model. Simul. 17(2), 593-619 (2019) [29] Ma, C., Alber, C., Scheichl, R.: Wavenumber explicit convergence of a multiscale GFEM for heterogeneous Helmholtz problems. arXiv:2112.10544 (2021) [30] Ma, C., Scheichl, R.: Error estimates for fully discrete generalized FEMs with locally optimal spectral approximations. Math. Comput. 91, 2539-2569 (2022) [31] Ma, C., Scheichl, R., Dodwell, T.: Novel design and analysis of generalized FE methods based on locally optimal spectral approximations. arXiv:2103.09545 (2021) [32] Maier, R.: A high-order approach to elliptic multiscale problems with general unstructured coefficients. SIAM J. Numer. Anal. 59(2), 1067-1089 (2021) [33] Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comput. 83(290), 2583-2603 (2014) [34] Melenk, J.M.: On n-widths for elliptic problems. J. Math. Anal. Appl. 247(1), 272-289 (2000) [35] Melenk, J.M., Sauter, S.: Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comput. 79(272), 1871-1914 (2010) [36] Owhadi, H.: Bayesian numerical homogenization. Multiscale Model. Simul. 13(3), 812-828 (2015) [37] Owhadi, H.: Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev. 59(1), 99-149 (2017) [38] Owhadi, H., Scovel, C.: Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Approximation and Algorithm Design, vol. 35. Cambridge University Press, Cambridge (2019) [39] Owhadi, H., Zhang, L.: Metric-based upscaling. Commun. Pure Appl. Math. 60(5), 675-723 (2007) [40] Owhadi, H., Zhang, L.: Localized bases for finite-dimensional homogenization approximations with nonseparated scales and high contrast. Multiscale Model. Simul. 9(4), 1373-1398 (2011) [41] Owhadi, H., Zhang, L., Berlyand, L.: Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization. ESAIM: Math. Model. Numer. Anal. 48(2), 517-552 (2014) [42] Peherstorfer, B.: Breaking the Kolmogorov barrier with nonlinear model reduction. Not. Am. Math. Soc. 69(5), 725-733 (2022) [43] Pinkus, A.: N-Widths in Approximation Theory, vol. 7. Springer Science & Business Media, Berlin (2012) [44] Schleuß, J., Smetana, K.: Optimal local approximation spaces for parabolic problems. Multiscale Model. Simul. 20(1), 551-582 (2022) [45] Smetana, K., Patera, A.T.: Optimal local approximation spaces for component-based static condensation procedures. SIAM J. Sci. Comput. 38(5), A3318-A3356 (2016) |