[1] Almeida, L.B.: A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In: Diederich, J. (ed) Artificial Neural Networks: Concept Learning, pp 102-111. IEEE Press, Los Alamitos (1990). https://doi.org/10.5555/104134.104145 [2] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, New York (2017) [3] Beck, A.: First-Order Methods in Optimization. SIAM, Philadelphia (2017) [4] Berahas, A.S., Byrd, R.H., Nocedal, J.: Derivative-free optimization of noisy functions via quasi-Newton methods. SIAM J. Optim. 29(2), 965-993 (2019) [5] Bisong, E.: Google colaboratory. In: Building Machine Learning and Deep Learning Models on Google Cloud Platform, pp. 59-64. Springer, New York (2019) [6] Brooks, S.H.: A discussion of random methods for seeking maxima. Oper. Res. 6(2), 244-251 (1958) [7] Cai, H., Lou, Y., McKenzie, D., Yin, W.: A zeroth-order block coordinate descent algorithm for huge-scale black-box optimization. In: International Conference on Machine Learning. PMLR, pp 1193-1203 (2021) [8] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: A one-bit, comparison-based gradient estimator. Appl. Comput. Harmon. Anal. 60, 242-266 (2022) [9] Cai, H., Mckenzie, D., Yin, W., Zhang, Z.: Zeroth-order regularized optimization (zoro): approximately sparse gradients and adaptive sampling. SIAM J. Optim. 32(2), 687-714 (2022) [10] Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J., Sagun, L., Zecchina, R.: Entropy-SGD: biasing gradient descent into wide valleys. J. Stat. Mech 2019(12), 124018 (2019) [11] Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Carlier, G.: Deep relaxation: partial differential equations for optimizing deep neural networks. Res. Math. Sci. 5(3), 1-30 (2018) [12] Crandall, M.G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43(167), 1-19 (1984) [13] Davis, D., Drusvyatskiy, D.: Stochastic subgradient method converges at the rate k-1/4 on weakly convex functions. arXiv:1802.02988 (2018) [14] Davis, D., Drusvyatskiy, D.: Stochastic model-based minimization of weakly convex functions. SIAM J. Optim. 29(1), 207-239 (2019) [15] Davis, D., Drusvyatskiy, D., MacPhee, K.J., Paquette, C.: Subgradient methods for sharp weakly convex functions. J. Optim. Theory Appl. 179(3), 962-982 (2018) [16] Davis, D., Díaz, M., Drusvyatskiy, D.: Escaping strict saddle points of the Moreau envelope in nonsmooth optimization. SIAM J. Optim. 32(3), 1958-1983 (2022) [17] Ermoliev, Y.M., Wets, R.-B.: Numerical Techniques for Stochastic Optimization. Springer-Verlag, New York (1988) [18] Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence, RI (2010) [19] Evans, L.C.: Envelopes and nonconvex Hamilton-Jacobi equations. Calc. Var. Partial. Differ. Equ. 50(1), 257-282 (2014) [20] Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, vol. 2. Springer, New York (2009) [21] Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157-181 (1993) [22] Jones, E., Oliphant, T., Peterson, P., et al. SciPy: open source scientific tools for Python. http://www.scipy.org/ (2001) [23] Jourani, A., Thibault, L., Zagrodny, D.: Differential properties of the Moreau envelope. J. Funct. Anal. 266(3), 1185-1237 (2014) [24] Kim, B., Cai, H., McKenzie, D., Yin, W.: Curvature-aware derivative-free optimization. arXiv:2109.13391 (2021) [25] Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015, San Diego, CA (2015) [26] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671-680 (1983) [27] Kozak, D., Becker, S., Doostan, A., Tenorio, L.: Stochastic subspace descent. arXiv:1904.01145 (2019) [28] Kozak, D., Becker, S., Doostan, A., Tenorio, L.: A stochastic subspace approach to gradient-free optimization in high dimensions. Comput. Optim. Appl. 79(2), 339-368 (2021) [29] Kozak, D., Molinari, C., Rosasco, L., Tenorio, L., Villa, S.: Zeroth order optimization with orthogonal random directions. arXiv:2107.03941 (2021) [30] Larson, J., Menickelly, M., Wild, S.M.: Derivative-free optimization methods. Acta Numer. 28, 287-404 (2019) [31] Le Digabel, S.: Algorithm 909: NOMAD: nonlinear optimization with the mads algorithm. ACM Transact. Math. Softw. (TOMS) 37(4), 1-15 (2011) [32] Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200-212 (1994) [33] Moré, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172-191 (2009) [34] Moreau, J.J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. C. R. Hebd. Seances Acad. Sci. 255, 238-240 (1962) [35] Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273-299 (1965) [36] Olson, B., Hashmi, I., Molloy, K., Shehu, A.: Basin hopping as a general and versatile optimization framework for the characterization of biological macromolecules. Adv. Artif. Intell. 2012, 674832 (2012) [37] Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12-49 (1988) [38] Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907-922 (1991) [39] Rastrigin, L.: The convergence of the random search method in the extremal control of a many parameter system. Automat. Remote Control 24, 1337-1342 (1963) [40] Rockafellar, R.T.: Convex Analysis, vol. 18. Princeton University Press, Princeton (1970) [41] Scaman, K., Dos Santos, L., Barlier, M., Colin, I.: A simple and efficient smoothing method for faster optimization and local exploration. Adv. Neural. Inf. Process. Syst. 33, 6503-6513 (2020) [42] Shi, H.-J. M., Xie,Y., Xuan, M. Q., Nocedal, J.: Adaptive finite-difference interval estimation for noisy derivative-free optimization. arXiv:2110.06380 (2021) [43] Shi, H.-J.M., Xuan, M.Q., Oztoprak, F., Nocedal, J.: On the numerical performance of derivative-free optimization methods based on finite-difference approximations. arXiv:2102.09762 (2021) [44] Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341-359 (1997) [45] Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: test functions and datasets. Retrieved June 23. http://www.sfu.ca/~ssurjano (2021) [46] Wales, D.J., Doye, J.P.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101(28), 5111-5116 (1997) |