1. Au, S.K., Beck, J.L.: Estimation of small failure probabilities in high dimensions by subset simulation.Probab. Eng. Mech. 16, 263–277 (2001) 2. Bischof, R., Kraus, M.: Multi-objective loss balancing for physics-informed deep learning. arXiv: 2110. 09813 (2021) 3. Daw, A., Bu, J., Wang, S., Perdikaris, P., Karpatne, A.: Rethinking the importance of sampling in physics-informed neural networks. arXiv: 2207. 02338 (2022) 4. E, W.N.: Machine learning and computational mathematics. Commun. Comput. Phys. 28, 1639–1670 (2020) 5. E, W.N., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6, 1–12 (2018) 6. Gao, Z., Yan, L., Zhou, T.: Failure-informed adaptive sampling for PINNs. SIAM J. Sci. Comput. 45, A1971–A1994 (2023) 7. Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., Michael, W.M.: Characterizing possible failure modes in physics-informed neural networks. Adv. Neural Inform. Process. Syst. 34, 26548–26560 (2021) 8. Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63, 208–228 (2021) 9. McClenny, L., Braga-Neto, U.: Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv: 2009. 04544 (2020) 10. Peng, W., Zhou, W., Zhang, X., Yao, W., Liu, Z.: RANG: a residual-based adaptive node generation method for physics-informed neural networks. arXiv: 2205. 01051 (2022) 11. Raissi, M., Perdikaris, P., George, E.K.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019) 12. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018) 13. Subramanian, S., Kirby, R.M., Mahoney, M.W., Gholami, A.: Adaptive self-supervision algorithms for physics-informed neural networks. arXiv: 2207. 04084 (2022) 14. Tang, K., Wan, X., Yang, C.: DAS: a deep adaptive sampling method for solving partial differential equations. arXiv: 2112. 14038 (2021) 15. Wang, S., Sankaran, S., Perdikaris, P.: Respecting causality is all you need for training physicsinformed neural networks. arXiv: 2203. 07404 (2022) 16. Wang, S., Teng, Y., Perdikaris, P.: Understanding and mitigating gradient flow pathologies in physicsinformed neural networks. SIAM J. Sci. Comput. 43, A3055–A3081 (2021) 17. Wang, S., Yu, X.L., Perdikaris, P.: When and why PINNs fail to train: a neural tangent kernel perspective. J. Comput. Phys. 449, 110768 (2022) 18. Wu, C.X., Zhu, M., Tan, Q., Kartha, Y., Lu, L.: A comprehensive study of non-adaptive and residualbased adaptive sampling for physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 403, 115671 (2023) 19. Xiang, Z., Wei, P., Liu, X., Yao, W.: Self-adaptive loss balanced physics-informed neural networks. Neurocomputing 496, 11–34 (2022) 20. Zang, Y., Bao, G., Ye, X., Zhou, H.: Weak adversarial networks for high-dimensional partial differential equations. J. Comput. Phys. 411, 109409 (2020) 21. Zuev, K.: Subset simulation method for rare event estimation: an introduction. arXiv: 1505. 03506 (2015) |