1. Machine Learning for Computational Fluid and Solid Dynamics. Santa Fe, NM, USA, 19–21 (2019) 2. Scientific Machine Learning. ICERM, Providence, RI, USA, January 28–30 (2019) 3. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org 4. Bar-Sinai, Y., Hoyer, S., Hickey, J., Brenner, M.P.: Learning data-driven discretizations for partial differential equations. PNAS 116, 15344–15349 (2019) 5. Beck, C., E, W.N., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. Journal of Nonlinear Science 29, 1563–1619 (2019) 6. Berg, J., Nystróm, K.: A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317, 28–41 (2018) 7. Brunton, S., Proctor, J., Kutz, N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016) 8. Cotter, N.E.: The Stone-Weierstrass theorem and its application to neural networks. IEEE Trans. Neural Networks 1, 290–295 (1990) 9. Csái, B.C.: Approximation with artificial neural networks. MSc Thesis, Eotvos Lorand University (ELTE), Budapest, Hungary (2001) 10. Du, J., Xu, Y.: Hierarchical deep neural network for multivariate regression. Pattern Recogn. 63, 149–157 (2017) 11. François, F., et al.: Keras (2015) https:// keras. io 12. Golak, S.: A MLP solver for first and second order partial differential equations. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds.) Artificial Neural Networks-ICANN 2007, pp. 789–797. Springer-Verlag, Berlin, Heidelberg (2007) 13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA (2016) 14. Goulianas, K., Margaris, A., Refanidis, I., Diamantaras, K., Papadimitriou, T.: A back propagationtype neural network architecture for solving the complete n×n nonlinear algebraic system of equations. Adv. Pure Math. 6, 455–480 (2016) 15. Gyrya, V., Shashkov, M., Skurikhin, A.: Exploration of machine learning for polynomial root finding. https:// www. resea rchga te. netpu blica tion/ 33110 1795_ Explo ration_ of_ Machi ne_ learn ing_ for_ Polyn omial_ Root_ Findi ng_ Motiv ation 16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, pp. 770–778. IEEE (2016) 17. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989) 18. Huang, D.S., Ip, H.H.S., Chi, Z.: A neural root finder of polynomials based on root moments. Neural Comput. 16, 1721–1762 (2004) 19. Kumar, M., Yadav, N.: Multilayer perceptrons and radial basis function neural network methods for the solution of differential equations: a survey. Comput. Math. Appl. 62, 3796–3811 (2011) 20. Kurková, V.: Kolmogorov’s theorem and multilayer neural networks. Neural Netw. 5, 501–506 (1992) 21. Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Networks 9, 987–1000 (1998) 22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015) 23. Lin, H., Jegelka, S.: ResNet with one-neuron hidden layers is a universal approximator. In: Proc. of the Intern. Conf. on Neural Information Processing Systems, pp. 6172–6181 (2018) 24. Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-Net: learning PDEs from data. In: Proc. the 35th Intern. Conf. on Machine Learning. PMLR (2018) 25. Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural networks: a view from width. In: Proc. of the Intern. Conf. on Neural Information Processing Systems, pp. 6232–6240 (2017) 26. Lye, K. O., Mishra, S., Ray, D.: Deep learning observables in computational fluid dynamics. J. Comput. Phys. 410, 109339 (2020) 27. Meade, A.J., Fernandez, A.A.: Solution of nonlinear ordinary differential equations by feedforward neural networks. Mathl. Comput. Modeling 20, 19–44 (1994) 28. Mishra, S.: A machine learning framework for data driven acceleration of computations of differential equations. Mathematics in Engineering 1, 118–146 (2018) 29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011) 30. Qin, T., Wu, K., Xiu, D.: Data driven governing equations approximation using deep neural networks. J. Comput. Phys. 395, 620–635 (2019) 31. Raissi, M., Babee, H., Karniadakis, G. E.: Parametric Gaussian process regression for big data. Comput. Mech. 64, 409–416 (2019) 32. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018) 33. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019) 34. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA (2006) 35. Ray, D., Hesthaven, J.: An artificial neural network as a troubled-cell indicator. J. Comput. Phys. 367, 166–191 (2018) 36. Ray, D., Hesthaven, J.: Detecting troubled-cells on two-dimensional unstructured grids using a neural network. J. Comput. Phys. 397, 108845 (2018) 37. Rumelhart, D. E., McClelland, J.L.: PDP Research Group. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1: Foundations. MIT Press, Cambridge, MA (1986) 38. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018) 39. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Networks 2, 568–576 (1991) 40. Tokareva, S., Shashkov, M., Skurikhin, A.: Machine learning approach for the solution of the Riemann problem in fluid dynamics. https:// www. resea rchga te. net/ publi cation/ 33079 8897_ Machi ne_ learn ing_appro ach_ for_ the_ solut ion_ of_ the_ Riema nn_ probl em_ in_ fluid_ dynam ics 41. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating Eulerian fluid simulation with convolutional networks. In: Proc. 34th Intern. Conf. on Machine Learning (2017) 42. Toro, E. F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin, Heidelberg (2009) 43. Veiga, H.M., Abgrall, R.: Towards a general stabilisation method for conservation laws using a multilayer perceptron neural network: 1D scalar and system of equations. In: ECCM-ECFD 2018 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) 7th European Conference on Computational Fluid Dynamics, Glasgow, United Kingdom (2018) 44. Winovich, N., Ramani, K., Lin, G.: ConvPDE-UQ: convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial differential equations on varied domains. 394, 263–279 (2019) 45. Xie, Y., Franz, E., Chu, M., Thuerey, N.: tempoGAN: a temporally coherent, volumetric GAN for super-resolution fluid flow. ACM Transactions on Graphics 37(95), 1–15 (2018) |