1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.:Unifed analysis of discontinuous Galerkin meth-ods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749-1779 (2002) 2. Balsara, D.S., Li, J., Montecinos, G.I.:An efcient, second order accurate, universal generalized Rie-mann problem solver based on the HLLI Riemann solver. J. Comput. Phys. 375, 1238-1269 (2018) 3. Balsara, D.S., Rumpf, T., Dumbser, M., Munz, C.D.:Efcient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics. J. Comput. Phys. 228(7), 2480-2516 (2009) 4. Ben-Artzi, M., Falcovitz, J.:A second-order Godunov-type scheme for compressible fuid dynamics. J. Comput. Phys. 55(1), 1-32 (1984) 5. Bourgeade, A., Le Floch, P., Raviart, P.:An asymptotic expansion for the solution of the generalized Riemann problem. Part 2:Application to the equations of gas dynamics. Annales de l'Institut Henri Poincare (C) Nonlinear Analysis, vol. 6, pp. 437-480 6. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.:A unifed framework for the construction of one-step fnite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209-8253 (2008) 7. Dumbser, M., Käser, M.:Arbitrary high order non-oscillatory fnite volume schemes on unstructured meshes for linear hyperbolic systems. J. Comput. Phys. 221(2), 693-723 (2007) 8. Dumbser, M., Munz, C.D.:Building blocks for arbitrary high order discontinuous Galerkin schemes. J. Sci. Comput. 27(1/2/3), 215-230 (2005) 9. Gassner, G., Dumbser, M., Hindenlang, F., Munz, C.D.:Explicit one-step time discretizations for dis-continuous Galerkin and fnite volume schemes based on local predictors. J. Comput. Phys. 230(11), 4232-4247 (2011) 10. Gassner, G., Lörcher, F., Munz, C.D.:A contribution to the construction of difusion fuxes for fnite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224(2), 1049-1063 (2007) 11. Gassner, G., Lörcher, F., Munz, C.D.:A discontinuous Galerkin scheme based on a space-time expan-sion II. Viscous fow equations in multi dimensions. J. Sci. Comput. 34(3), 260-286 (2007) 12. Godunov, S.K.:A diference method for numerical calculation of discontinuous solutions of the equa-tions of hydrodynamics. Mat. Sb. (N.S.) 47(89), 271-306 (1959) 13. Goetz, C.R., Dumbser, M.:A novel solver for the generalized Riemann problem based on a simplifed LeFloch-Raviart expansion and a local space-time discontinuous Galerkin formulation. J. Sci. Com-put. 69(2), 805-840 (2016) 14. Harabetian, E.:A numerical method for viscous perturbations of hyperbolic conservation laws. SIAM J. Numer. Anal. 27(4), 870-884 (1990) 15. Harten, A., Lax, P.D., van Leer, B.:On upstream diferencing and Godunov-type schemes for hyper-bolic conservation laws. SIAM Rev. 25(1), 35-61 (1983) 16. Jameson, A., Schmidt, W., Turkel, E.:Numerical solution of the Euler equations by fnite volume methods using Runge Kutta time stepping schemes. In:14th Fluid and Plasma Dynamics Conference. American Institute of Aeronautics and Astronautics (1981). https://doi.org/10.2514/6.1981-1259 17. Le Floch, P., Raviart, P.A.:An asymptotic expansion for the solution of the generalized Riemann prob-lem. Part I:General theory. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol. 5, pp. 179-207 18. Lörcher, F., Gassner, G., Munz, C.D.:A discontinuous Galerkin scheme based on a space-time expan-sion. I. Inviscid compressible fow in one space dimension. J. Sci. Comput. 32(2), 175-199 (2007) 19. Roe, P.:Approximate Riemann solvers, parameter vectors, and diference schemes. J. Comput. Phys. 43(2), 357-372 (1981) 20. Titarev, V.A., Toro, E.F.:ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comput. Phys. 204(2), 715-736 (2005) 21. Toro, E., Titarev, V.:Solution of the generalized Riemann problem for advection-reaction equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458(2018), 271-281 (2002) 22. Toro, E.F.:Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin (2009) 23. van der Vegt, J., van der Ven, H.:Space-time discontinuous Galerkin fnite element method with dynamic grid motion for inviscid compressible fows. J. Comput. Phys. 182(2), 546-585 (2002) 24. van Leer, B.:Towards the ultimate conservative diference scheme. V. A second-order sequel to Godu-nov's method. J. Comput. Phys. 32(1), 101-136 (1979) 25. van Leer, B., Nomura, S.:Discontinuous Galerkin for difusion. In:17th AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2005) 26. Weekes, S.L.:The travelling wave scheme for the Navier-Stokes equations. SIAM J. Numer. Anal. 35(3), 1249-1270 (1998) 27. Wood, W.L.:An exact solution for Burgers equation. Commun. Numer. Methods Eng. 22(7), 797-798 (2006) |