1. Avvakumov, A.V., Strizhov, V.F., Vabishchevich, P.N., Vasilev, A.O.: Numerical modeling of neutron transport in SP3 approximation by finite element method. arXiv: 1903. 11502 v1 (2019) 2. Azmy, Y., Sartori, E.: Nuclear Computational Science: a Century in Review. Springer, Berlin (2010) 3. Bell, G., Glasstone, S.: Nuclear Reactor Theory. Van Nostrand Reinhold Company, New York (1970) 4. Brenner, S.C., Scott, L.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008) 5. Buet, C., Després, B., Morel, G.: Discretization of the PN model for 2D transport of particles with a Trefftz discontinuous Galerkin method (2019). https:// hal. sorbo nne- unive rsite. fr/ hal- 02372 279/ document 6. Buet, C., Despres, B., Morel, G.: Trefftz discontinuous Galerkin basis functions for a class of Friedrichs systems coming from linear transport. ACOM 4, 1–27 (2020) 7. Buffa, A., Monk, P.: Error estimates for the Ultra Weak Variational Formulation of the Helmholtz equation. ESAIM Math. Model. Numer. Anal. 42, 925–940 (2008) 8. Cessenat, O., Després, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35, 255–299 (1998) 9. Cessenat, O., Després, B.: Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. Medium Freq. Acoust. 11, 227–238 (2003) 10. Crockatt, M.M., Christlieb, A.J., Garrett, C.K., Hauck, C.D.: Hybrid methods for radiation transport using diagonally implicit Runge-Kutta and space-time discontinuous Galerkin time integration. J. Comput. Phys. 376, 455–477 (2019) 11. Després, B., El Ghaoui, M., Sayah, T.: A Trefftz method with reconstruction of the normal derivative applied to elliptic equations. Math. Comp. 91, 2645–2679 (2022) 12. Gittelson, C.J., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the h-version. ESAIM Math. Model. Numer. Anal. 43, 297–331 (2009) 13. Heningburg, V., Hauck, C.D.: A hybrid finite-volume, discontinuous Galerkin discretization for the radiative transport equation. Multiscale Model. Simul. 19, 1–24 (2021) 14. Hermeline, F.: A discretization of the multigroup PN radiative transfer equation on general meshes. J. Comput. Phys. 313, 549–582 (2016) 15. Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the p-version. SIAM J. Numer. Anal. 49, 264–284 (2011) 16. Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods: exponential convergence of the hp-version. Found. Comput. Math. 16, 637–675 (2016) 17. Huttunen, T., Monk, P., Kaipio, J.P.: Computational aspects of the ultra-weak variational formulation. J. Comput. Phys. 182, 27–46 (2002) 18. Imbert-Gérard, L.-M.: Interpolation properties of generalized plane waves. Numer. Math. 131, 683–711 (2015) 19. Imbert-Gerard, L.-M.: Amplitude-based generalized plane waves: new quasi-Trefftz functions for scalar equations in two dimensions. SIAM J. Numer. Anal. 59, 1663–1686 (2021) 20. Imbert-Gérard, L.-M., Després, B.: A generalized plane-wave numerical method for smooth nonconstant coefficients. IMA J. Numer. Anal. 34, 1072–1103 (2014) 21. Lehrenfeld, C., Stocker, P.: Embedded Trefftz discontinuous Galerkin methods (2022). arXiv: 2201. 07041 22. McClarren, R.G.: Theoretical aspects of the simplified PN equations. Transp. Theory Stat. Phys. 39, 73–109 (2010) 23. Mihalas, D., Mihalas, B.W.: Foundations of Radiation Hydrodynamics. Oxford University Press, New York (1984) 24. Moiola, A., Hiptmair, R., Perugia, I.: Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 62, 809–837 (2011) 25. Morel, G.: Asymptotic-preserving and well-balanced schemes for transport models using Trefftz discontinuous Galerkin method, theses, Sorbonne Université (2018). https:// hal. archi ves- ouver tes. fr/ tel-01911 872 26. Morel, G., Buet, C., Després, B.: Trefftz discontinuous Galerkin method for Friedrichs systems with linear relaxation: application to the P1 model. Comput. Methods Appl. Math. 18, 521–557 (2018) 27. Pomraning, G.C.: The Equations of Radiation Hydrodynamics, International Series of Monographs in Natural Philosophy. Pergamon Press, Oxford (1973) 28. Zienkiewicz, O.: Origins, milestones and directions of the finite element method—A personal view. Archives of Computational Methods in Engineering 2, 1–48 (1995) |