1. Balsara, D., Altmann, C., Munz, C., Dumbser, M.:A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes. J. Comput. Phys. 226, 586-620 (2007) 2. Barth, T.J., Jespersen, D.:The design and application of upwind schemes on unstructured meshes. In: 27th Aerospace Sciences Meeting, 09 January 1989-12 January 1989, Reno, NV, USA (1989). https:// doi. org/10. 2514/6. 1989- 366 3. Biswas, R., Devine, K.D., Flaherty, J.:Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255-283 (1994) 4. Borges, R., Carmona, M., Costa, B., Don, W.S.:An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191-3211 (2008) 5. Burbeau, A., Sagaut, P., Bruneau, C.H.:A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys. 169, 111-150 (2001) 6. Capdeville, G.:A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J. Comput. Phys. 227, 2977-3014 (2008) 7. Castro, M., Costa, B., Don, W.S.:High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766-1792 (2011) 8. Cockburn, B., Hou, S., Shu, C.-W.:The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV:the multidimensional case. Math. Comput. 54, 545-581 (1990) 9. Cockburn, B., Lin, S.-Y., Shu, C.-W.:TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III:one dimensional systems. J. Comput. Phys. 84, 90-113 (1989) 10. Cockburn, B., Shu, C.-W.:TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II:general framework. Math. Comput. 52, 411-435 (1989) 11. Cockburn, B., Shu, C.-W.:The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. RAIRO Model. Math. Anal. Numer. 25, 337-361 (1991) 12. Cockburn, B., Shu, C.-W.:The Runge-Kutta discontinuous Galerkin method for conservation laws V:multidimensional systems. J. Comput. Phys. 141, 199-224 (1998) 13. Cockburn, B., Shu, C.-W.:Runge-Kutta discontinuous Galerkin method for convection-dominated problems. J. Sci. Comput. 16, 173-261 (2001) 14. Cummings, R.M., Mason, W.H., Morton, S.A., McDaniel, D.R.:Applied Computational Aerodynamics. A Modern Engineering Approach. Cambridge University Press, New York (2015) 15. Dumbser, M.:Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations. Comput. Fluids 39, 60-76 (2010) 16. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.:A unified framework for the construction of onestep finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227, 8209-8253 (2008) 17. Dumbser, M., Zanotti, O., Loubere, R., Diot, S.:A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47-75 (2014) 18. Friedrichs, O.:Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids. J. Comput. Phys. 144, 194-212 (1998) 19. Harten, A.:High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357-393 (1983) 20. Hu, C., Shu, C.-W.:Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97-127 (1999) 21. Jameson, A.:Steady-state solutions of the Euler equations for transonic flow by a multigrid method. In: Richard E.M. (ed) Transonic, Shock, and Multidimensional Flows:Advances in Scientific Computing, pp. 37-70. Academic Press, New York (1982). https://doi. org/10. 2514/6. 1993- 3359 22. Jameson, A.:Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows. In:11th Computational Fluid Dynamics Conference, 06 July 1993-09 July 1993, Orlando, FL, USA (1993). https://doi. org/10. 2514/6. 1993- 3359 23. Jameson, A.:A perspective on computational algorithms for aerodynamic analysis and design. Prog. Aerosp. Sci. 37, 197-243 (2001) 24. Jameson, A., Schmidt, W., Turkel, E.:Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. In:14th Fluid and Plasma Dynamics Conference, 23 June 1981-25 June 1981, Palo Alto, CA, USA (1981). https://doi. org/10. 2514/6. 1981- 1259 25. Jiang, G., Shu, C.-W.:Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202-228 (1996) 26. Levy, D., Puppo, G., Russo, G.:Central WENO schemes for hyperbolic systems of conservation laws. M2AN Math. Model. Numer. Anal. 33, 547-571 (1999) 27. Levy, D., Puppo, G., Russo, G.:Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656-672 (2000) 28. Liu, X., Osher, S., Chan, T.:Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200-212 (1994) 29. Luo, H., Baum, J.D., Lohner, R.:A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids. J. Comput. Phys. 225, 686-713 (2007) 30. Luo, H., Baum, J.D., Lohner, R.:A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids. J. Comput. Phys. 227, 8875-8893 (2008) 31. Luo, H., Luo, L., Nourgaliev, R., Mousseau, V.A., Dinh, N.:A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. J. Comput. Phys. 229, 6961- 6978 (2010) 32. Luo, H., Xia, Y., Li, S., Nourgaliev, R., Cai, C.:A Hermite WENO reconstruction-based discontinuous Galerkin method for the equations on tetrahedral grids. J. Comput. Phys. 231, 5489-5503 (2012) 33. Luo, H., Xia, Y., Spiegel, S., Nourgaliev, R., Jiang, Z.:A reconstructed discontinuous Galerkin method based on a hierarchical WENO reconstruction for compressible flows on tetrahedral grids. J. Comput. Phys. 236, 477-492 (2013) 34. Osher, S., Chakravarthy, C.:High-resolution schemes and the entropy condition. SIAM J. Numer. Anal. 21, 955-984 (1984) 35. Qiu, J., Shu, C.-W.:A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27, 995-1013 (2005) 36. Reed, W.H., Hill, T.R.:Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM (1973) 37. Serna, S., Marquina, A.:Power ENO methods:a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194, 632-658 (2004) 38. Shida, Y., Kuwahara, K., Ono, K., Takami, H.:Computation of dynamic stall of a NACA-0012 airfoil. AIAA J. 25, 408-413 (1987) 39. Shu, C.-W.:High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev. 51, 82-126 (2009) 40. Shu, C.-W., Osher, S.:Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439-471 (1988) 41. Venkatakrishnan, V.:Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J. Comput. Phys. 118, 120-130 (1995) 42. Wu, L., Zhang, Y.-T., Zhang, S., Shu, C.-W.:High order fixed-point sweeping WENO methods for steady state of hyperbolic conservation laws and its convergence study. Commun. Comput. Phys. 20, 835-869 (2016) 43. Yee, H.C., Harten, A.:Implicit TVD schemes for hyperbolic conservation laws in curvilinear coordinates. AIAA J. 25, 266-274 (1987) 44. Yee, H.C., Warming, R.F., Harten, A.:Implicit total variation diminishing (TVD) schemes for steadystate calculations. J. Comput. Phys. 57, 327-360 (1985) 45. Zhang, L., Liu, W., He, L., Deng, X., Zhang, H.:A class of hybrid DG/FV methods for conservation laws I:basic formulation and one-dimensional systems. J. Comput. Phys. 231, 1081-1103 (2012) 46. Zhang, L., Liu, W., He, L., Deng, X., Zhang, H.:A class of hybrid DG/FV methods for conservation laws II:two-dimensional cases. J. Comput. Phys. 231, 1104-1120 (2012) 47. Zhang, S., Jiang, S., Shu, C.-W.:Improvement of convergence to steady state solutions of Euler equations with the WENO schemes. J. Sci. Comput. 47, 216-238 (2011) 48. Zhang, S., Shu, C.-W.:A new smoothness indicator for WENO schemes and its effect on the convergence to steady state solutions. J. Sci. Comput. 31, 273-305 (2007) 49. Zhu, J., Shu, C.-W.:A new type of multi-resolution WENO schemes with increasingly higher-order of accuracy on triangular meshes. J. Comput. Phys. 392, 19-33 (2019) 50. Zhu, J., Shu, C.-W., Qiu, J.:High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes. Appl. Numer. Math. 153, 519-539 (2020) 51. Zhu, J., Shu, C.-W., Qiu, J.:High-order Runge-Kutta discontinuous Galerkin methods with multi-resolution WENO limiters for solving steady-state problems. Appl. Numer. Math. 165, 482-499 (2021) 52. Zhu, J., Zhong, X., Shu, C.-W., Qiu, J.:Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured meshes. Commun. Comput. Phys. 21, 623-649 (2017) |