1.Agouzal, A., Vassilevski, Y.:On a discrete Hessian recovery for P1 fnite elements.J.Numer.Math.10(1), 1-12 (2002) 2.Aguilera, N.E., Morin, P.:On convex functions and the fnite element method.SIAM J.Numer.Anal.47(4), 3139-3157 (2009) 3.Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.:Unifed form language:a domain-specifc language for weak formulations of partial diferential equations.CoRR (2012).arXiv:1211.4047 4.Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.:Unifed analysis of discontinuous Galerkin methods for elliptic problems.SIAM J.Numer.Anal.39(5), 1749-1779 (2002) 5.Barles, G., Souganidis, P.E.:Convergence of approximation schemes for fully nonlinear second order equations.Asymptot.Anal.4(3), 271-283 (1991) 6.Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.:A generic grid interface for parallel and adaptive scientifc computing.I.Abstract framework.Computing 82(2/3), 103-119 (2008) 7.Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.:A generic grid interface for parallel and adaptive scientifc computing.II.Implementation and tests in DUNE.Computing 82(2/3), 121-138 (2008) 8.Böhmer, K.:On fnite element methods for fully nonlinear elliptic equations of second order.SIAM J.Numer.Anal.46(3), 1212-1249 (2008) 9.Brenner, S.C., Sung, L.-Y.:Virtual enriching operators.Calcolo 56(4), 1-25 (2019) 10.Bufa, A., Ortner, C.:Compact embeddings of broken Sobolev spaces and applications.IMA J.Numer.Anal.29(4), 827-855 (2009) 11.Burman, E., Ern, A.:Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian.C.R.Math.Acad.Sci.Paris 346(17/18), 1013-1016 (2008) 12.Cordes, H.O.:Über die erste randwertaufgabe bei quasilinearen diferentialgleichungen zweiter ordnung in mehr als zwei variablen.Math.Ann.131(3), 278-312 (1956) 13.Dedner, A., Klöfkorn, R., Nolte, M.:Python bindings for the DUNE-FEM module.Zenodo (2020).https://doi.org/10.5281/zenodo.3706993 14.Dedner, A., Klöfkorn, R., Nolte, M., Ohlberger, M.:A generic interface for parallel and adaptive scientifc computing:abstraction principles and the DUNE-FEM module.Computing 90, 165-196 (2010) 15.Dedner, A., Nolte, M.:The Dune-Python Module.CoRR (2018).arXiv:1807.05252 16.Douglas, J.Jr., Dupont, T.:Interior penalty procedures for elliptic and parabolic Galerkin methods.In:Computing Methods in Applied Sciences (Second Internat.Sympos., Versailles, 1975).Lecture Notes in Phys., vol.58, pp.207-216.Springer, Berlin (1976) 17.Di Pietro, D.A., Ern, A.:Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations.Math.Comput.79(271), 1303-1330 (2010) 18.Elman, H.C., Silvester, D.J., Wathen, A.J.:Finite elements and fast iterative solvers:with applications in incompressible fuid dynamics.In:Numerical Mathematics and Scientifc Computation.Oxford University Press, New York (2005) 19.Ern, A., Guermond, J.-L.:Theory and practice of fnite elements.In:Antman, S.S., Marsden, J.E., Sirovich, L.(eds) Applied Mathematical Sciences, vol.159.Springer, New York (2004) 20.Feng, X., Neilan, M.:Mixed fnite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method.SIAM J.Numer.Anal.47(2), 1226-1250 (2009) 21.Feng, X., Neilan, M.:Vanishing moment method and moment solutions for fully nonlinear second order partial diferential equations.J.Sci.Comput.38(1), 74-98 (2009) 22.Feng, X., Hennings, L., Neilan, M.:Finite element methods for second order linear elliptic partial differential equations in non-divergence form.Math.Comput.86(307), 2025-2051 (2017) 23.Feng, X., Neilan, M., Schnake, S.:Interior penalty discontinuous Galerkin methods for second order linear non-divergence form elliptic PDES.J.Sci.Comput.74(3), 1651-1676 (2018) 24.Gallistl, D.:Variational formulation and numerical analysis of linear elliptic equations in nondivergence form with Cordes coefcients.SIAM J.Numer.Anal.55(2), 737-757 (2017) 25.Gallistl, D.:Numerical approximation of planar oblique derivative problems in nondivergence form.Math.Comput.88(317), 1091-1119 (2019) 26.Georgoulis, E.H., Houston, P., Virtanen, J.:An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems.IMA J.Numer.Anal.31(1), 281-298 (2011) 27.Gilbarg, D., Trudinger, N.S.:Elliptic Partial Diferential Equations of Second Order, 2nd edn.Springer, Berlin (1983) 28.Jensen, M., Smears, I.:On the convergence of fnite element methods for Hamilton-Jacobi-Bellman equations.Technical report, 01 (2011) 29.Kawecki, E.L.:A DGFEM for nondivergence form elliptic equations with Cordes coefcients on curved domains.Numer.Methods Partial Difer.Equations 35(5), 1717-1744 (2019) 30.Kawecki, E.L., Smears, I.:Convergence of adaptive discontinuous Galerkin and c0-interior penalty fnite element methods for Hamilton-Jacobi-Bellman and Isaacs equations (2020).arXiv:2006.07215 31.Lakkis, O., Mousavi, A.:A least-squares Galerkin approach to gradient and Hessian recovery for nondivergence-form elliptic equations (2019).arXiv:1909.00491 32.Lakkis, O., Pryer, T.:A fnite element method for second order nonvariational elliptic problems.SIAM J.Sci.Comput.33(2), 786-801 (2011) 33.Lakkis, O., Pryer, T.:A nonvariational fnite element method for fully nonlinear elliptic problems.Submitted-Tech report (2012).arXiv:1103.2970 34.Miranda, C.:Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefcienti discontinui.Ann.Mat.63(1), 353-386 (1963) 35.Mu, L., Ye, X.:A simple fnite element method for non-divergence form elliptic equations.Int.J.Numer.Anal.Model.14(2), 306-311 (2017) 36.Oberman, A.M.:Convergent diference schemes for degenerate elliptic and parabolic equations:Hamilton-Jacobi equations and free boundary problems.SIAM J.Numer.Anal.44(2), 879-895 (2006) (electronic) 37.Pryer, T.:Discontinuous Galerkin methods for the p-biharmonic equation from a discrete variational perspective.Electron.Trans.Numer.Anal.41, 328-349 (2014) 38.Smears, I., Süli, E.:Discontinuous Galerkin fnite element approximation of nondivergence form elliptic equations with Cordès coefcients.SIAM J.Numer.Anal.51(4), 2088-2106 (2013) 39.Talenti, G.:Sopra una classe di equazioni ellittiche a coefcienti misurabili.Ann.Mat.69(1), 285-304 (1965) 40.Vallet, M.-G., Manole, C.-M., Dompierre, J., Dufour, S., Guibault, F.:Numerical comparison of some Hessian recovery techniques.Int.J.Numer.Methods Eng.72(8), 987-1007 (2007) |