[1] Alaa, H., Alaa, N.E., Bouchriti, A., Charkaou, A.: An improved nonlinear anisotropic PDE with $ p(x) $-growth conditions applied to image restoration and enhancement. Authorea (2022). https://doi.org/10.22541/au.165717367.72990650/v1 [2] Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29, 845–866 (1992) [3] Ambrosio, L., Caselles, V., Masnou, S., Morel, J.M.: The connected components of sets of finite perimeter. Eur. J. Math. 3, 39–92 (2001) [4] Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, vol. 147. Springer, New York (2006) [5] Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Trans. Image Process. 16(4), 1058–1072 (2007) [6] Black, M.J., Sapiro, G., Marimont, D.H., Heger, D.: Robust anisotropic diffusion. IEEE Trans. Image Process. 7(3), 421–432 (1998) [7] Blomgren, P., Chan, T.F., Mulet, P., Wong, C.: Total variation image restoration: numerical methods and extensions. In: Proceedings of the 1997 IEEE International Conference on Image Processing, Santa Barbara, CA, USA, 1997, vol. 42, pp. 384–387 (1997) [8] Bungert, L., Coomes, D.A., Ehrhardt, M.J., Rasch, J., Reisenhofer, R., Schönlieb, C.B.: Blind image fusion for hyperspectral imaging with the directional total variation. Inverse Probl. 34(4), 044003 (2018) [9] Bungert, L., Ehrhardt, M.J.: Robust image reconstruction with misaligned structural information. IEEE Access 8, 222944–222955 (2020) [10] Catté, F., Lions, P.L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992) [11] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006) [12] Chen, Y., Levine, S., Stanich, J.: Image restoration via nonstandard diffusion. Figshare (2014). https://www.mathcs.duq.edu/tech-reports/tr04-01.pdf [13] Chipot, M., de Oliveira, H.B.: Some results on the $ p(u) $-Laplacian problem. Math. Annal. 375, 283–306 (2019) [14] D’Apice, C., De Maio, U., Kogut, P.I.: Gap phenomenon in homogenization of parabolic optimal control problem. IMA J. Math. Control Inf. 25, 461–480 (2008) [15] D’Apice, C., De Maio, U., Kogut, P.I.: Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete Contin. Dyn. Syst. B 11(2), 283–314 (2009) [16] D’Apice, C., De Maio, U., Kogut, P.I.: An indirect approach to the existence of quasi-optimal controls in coefficients for multi-dimensional thermistor problem. In: Sadovnichiy, V.A., Zgurovsky, M. (eds.) Contemporary Approaches and Methods in Fundamental Mathematics and Mechanics, pp. 489–522. Springer, New York (2020) [17] D’Apice, C., Kogut, P.I., Kupenko, O., Manzo, R.: On variational problem with nonstandard growth functional and its applications to image processing. J. Math. Imaging Vis. 65(3), 472–491 (2023) [18] D’Apice, C., Kogut, P.I., Manzo, R., Uvarov, M.: Variational model with nonstandard growth conditions for restoration of satellite optical images using synthetic aperture radar. Eur. J. Appl. Math. 34(1), 77–105 (2023) [19] D’Apice, C., Kogut, P.I., Manzo, R.: On coupled two-level variational problem in Sobolev-Orlicz space. Differ. Integral Equ. 36(7/8), 621–660 (2023) [20] D’Apice, C., Kogut, P.I., Manzo, R.: A two-level variational algorithm in the Sobolev-Orlicz space to predict daily surface reflectance at LANDSAT high spatial resolution and MODIS temporal frequency. J. Comput. Appl. Math. 434, 1–23 (2023) [21] Dautray, R., Lion, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1985) [22] Diening, L., Harjulehto, P., Hästö, P., Ru??iĉka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, New York (2011) [23] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992) [24] Jia, Z., Ng, M.K., Wang, W.: Color image restoration by saturation-value total variation. SIAM J. Imaging Sci. 12(2), 972–1000 (2019) [25] Karami, F., Meskine, D., Sadik, K.: A new nonlocal model for the restoration of textured images. J. Appl. Anal. Comput. 9(6), 2070–2095 (2019) [26] Kogut, P.I.: Variational S-convergence of minimization problems. Part I. Definitions and basic properties. Problemy Upravleniya i Informatiki (Avtomatika) 5, 29–42 (1996) [27] Kogut, P.I.: $ S $-convergence of the conditional optimization problems and its variational properties. Problemy Upravleniya i Informatiki (Avtomatika) 4, 64–79 (1997) [28] Kogut, P.I.: On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discret. Contin. Dyn. Syst. A 34(5), 2105–2133 (2014) [29] Kogut, P.I.: On optimal and quasi-optimal controls in coefficients for multi-dimensional thermistor problem with mixed Dirichlet-Neumann boundary conditions. Control Cybern. 48(1), 31–68 (2019) [30] Kogut, P.I., Kohut, Y., Manzo, R.: Existence result and approximation of an optimal control problem for the Perona-Malik equation. Ric. Mat. (2022). https://doi.org/10.1007/11587-022-00730-4 [31] Kogut, P.I., Kupenko, O.P.: Approximation Methods in Optimization of Nonlinear Systems. De Gruyter Series in Nonlinear Analysis and Applications, vol. 32. Walter de Gruyter GmbH, Berlin (2019) [32] Kogut, P.I., Leugering, L.: On S-homogenization of an optimal control problem with control and state constraint. Z. fur Anal. ihre Anwend. 20(2), 395–429 (2001) [33] Kohr, H.: Total variation regularization with variable Lebesgue priors. arXiv:1702.08807 (2017) [34] Lieu, L.H., Vese, L.A.: Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev spaces. Appl. Math. Optim. 58, 167–193 (2008) [35] Manzo, R.: On Neumann boundary control problem for ill-posed strongly nonlinear elliptic equation with $ p $-Laplace operator and $ {L}^1 $-type of nonlinearity. Ric. Mat. 68(2), 769–802 (2019) [36] Manzo, R.: On Tikhonov regularization of optimal Neumann boundary control problem for an ill-posed strongly nonlinear elliptic equation with an exponential type of non-linearity. Differ. Integral Equ. 33(3/4), 139–162 (2020) [37] Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 2. AMS, Providence (2002) [38] Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 458–474 (1990) [39] Piella, G.: Image fusion for enhanced visualization: a variational approach. Int. J. Comput. Vis. 83(1), 1–11 (2009) [40] Pierre, F., Aujol, J.-F., Bugeau, A., Steidl, G., Ta, V.-T.: Variational contrast enhancement of gray-scale and RGB images. J. Math. Imaging Vis. 57, 99–116 (2017) [41] Prasath, V.B.S., Urbano, J.M., Vorotnikov, D.: Analysis of adaptive forward-backward diffusion flows with applications in image processing. Inverse Probl. 31, 1–30 (2015) [42] Ring, W.: Structural properties of solutions to total variation regularization problems. ESAIM: Math. Model. Numer. Anal. 34(4), 799–810 (2000) [43] Schönlieb, C.B.: Total Variation Minimization with an $ H^{-1} $ Constraint. Research Gate Publication (2009) [44] Sugimura, D., Mikami, T., Yamashita, H., Hamamoto, T.: Enhancing color images of extremely low light scenes based on RGB/NIR images acquisition with different exposure times. IEEE Trans. Image Process. 24(11), 3586–3597 (2015) [45] Wunderli, T.: On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions. J. Math. Anal. Appl. 364(2), 591–598 (2010) [46] Zhikov, V.V.: Solvability of the three-dimensional thermistor problem. Proc. Steklov Inst. Math. 281, 98–111 (2008) [47] Zhikov, V.V.: On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. 175(5), 463–570 (2011) |