[1] Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322-1332 (2018). https://doi.org/10.1109/TMI.2018.2799231 [2] Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311-4322 (2006) [3] Alberti, G.S., De Vito, E., Lassas, M., Ratti, L., Santacesaria, M.: Learning the optimal Tikhonov regularizer for inverse problems. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, pp. 25205-25216. Curran Associates Inc., New York (2021) [4] Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Modelling and Optimisation of Flows on Networks, pp. 1-155. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-32160-3_1 [5] Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: ICML, pp. 146-155. PMLR (2017) [6] Arridge, S., Maass, P., Öktem, O., Schönlieb, C.-B.: Solving inverse problems using data-driven models. Acta Numer. 28, 1-174 (2019) [7] Aspri, A., Banert, S., Öktem, O., Scherzer, O.: A data-driven iteratively regularized Landweber iteration. Numer. Funct. Anal. Optim. 41(10), 1190-1227 (2020) [8] Baguer, D.O., Leuschner, J., Schmidt, M.: Computed tomography reconstruction using deep image prior and learned reconstruction methods. Inverse Prob. 36(9), 094004 (2020). https://doi.org/10.1088/1361-6420/aba415 [9] Bai, S., Kolter, J.Z., Koltun, V. Deep equilibrium models. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, Curran Associates, Inc., New York (2019) [10] Barutcu, S., Aslan, S., Katsaggelos, A.K., Gürsoy, D.: Limited-angle computed tomography with deep image and physics priors. Sci. Rep. 11(1), 17740 (2021). https://doi.org/10.1038/s41598-021-97226-2 [11] Bauermeister, H., Burger, M., Moeller, M.: Learning spectral regularizations for linear inverse problems. In: NeurIPS 2020 Workshop on Deep Learning and Inverse Problems (2020) [12] Benning, M., Burger, M.: Modern regularization methods for inverse problems. Acta Numer. 27, 1-111 (2018) [13] Bora, A., Jalal, A., Price, E., Dimakis, A.G.: Compressed sensing using generative models. In: ICML, pp. 537-546. PMLR (2017) [14] Chen, Y., Ranftl, R., Pock, T.: Insights into analysis operator learning: from patch-based sparse models to higher order MRFs. IEEE Trans. Image Process. 23(3), 1060-1072 (2014) [15] Chen, H., Zhang, Y., Chen, Y., Zhang, J., Zhang, W., Sun, H., Lyu, Y., Liao, P., Zhou, J., Wang, G.: LEARN: learned experts’ assessment-based reconstruction network for sparse-data CT. IEEE Trans. Med. Imaging 37(6), 1333-1347 (2018) [16] Chen, H., Zhang, Y., Kalra, M.K., Lin, F., Chen, Y., Liao, P., Zhou, J., Wang, G.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524-2535 (2017). https://doi.org/10.1109/TMI.2017.2715284 [17] Chung, J., Chung, M., O’Leary, D.P.: Designing optimal spectral filters for inverse problems. SIAM J. Sci. Comput. 33(6), 3132-3152 (2011) [18] Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Kluwer, Dordrecht (1996) [19] He, J., Wang, Y., Ma, J.: Radon inversion via deep learning. IEEE Trans. Med. Imaging 39(6), 2076-2087 (2020) [20] Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509-4522 (2017). https://doi.org/10.1109/TIP.2017.2713099 [21] Kobler, E., Effland, A., Kunisch, K., Pock, T.: Total deep variation for linear inverse problems. In: CVPR, pp. 7546-7555 (2020) [22] Latorre, F., Ektekhari, A., Cevher, V. Fast and provable ADMM for learning with generative priors. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, Curran Associates, Inc., New York (2019) [23] Leuschner, J., Schmidt, M., Baguer, D.O., Maass, P.: LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction. Sci. Data. 8, 109 (2021). https://doi.org/10.1038/s41597-021-00893-z [24] Leuschner, J., Schmidt, M., Ganguly, P.S., Andriiashen, V., Coban, S.B., Denker, A., Bauer, D., Hadjifaradji, A., Batenburg, K.J., Maass, P., van Eijnatten, M.: Quantitative comparison of deep learning-based image reconstruction methods for low-dose and sparse-angle CT applications. J. Imaging 7(3), 44 (2021) [25] Li, H., Schwab, J., Antholzer, S., Haltmeier, M.: NETT: solving inverse problems with deep neural networks. Inverse Prob. 36(6), 065005 (2020) [26] Li, Y., Li, K., Zhang, C., Montoya, J., Chen, G.-H.: Learning to reconstruct computed tomography images directly from sinogram data under a variety of data acquisition conditions. IEEE Trans. Med. Imaging 38(10), 2469-2481 (2019). https://doi.org/10.1109/TMI.2019.2910760 [27] Mairal, J., Ponce, J., Sapiro, G., Zisserman, A., Bach, F.: Supervised dictionary learning. In: NeurIPS (2008) [28] Meinhardt, T., Moeller, M., Hazirbas, C., Cremers, D.: Learning proximal operators: using denoising networks for regularizing inverse imaging problems. In: ICCV, pp. 1781-1790 (2017) [29] Moeller, M., Mollenhoff, T., Cremers, D.: Controlling neural networks via energy dissipation. In: ICCV, pp. 3256-3265 (2019) [30] Riccio, D., Ehrhardt, M.J., Benning, M.: Regularization of inverse problems: deep equilibrium models versus bilevel learning. arXiv:2206.13193 (2022) [31] Rick Chang, J., Li, C.-L., Poczos, B., Vijaya Kumar, B., Sankaranarayanan, A.C.: One network to solve them all—solving linear inverse problems using deep projection models. In: ICCV, pp. 5888-5897 (2017) [32] Romano, Y., Elad, M., Milanfar, P.: The little engine that could: regularization by denoising (RED). SIAM J. Imaging Sci. 10(4), 1804-1844 (2017) [33] Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, pp. 234-241. Springer, Cham (2015) [34] Roth, S., Black, M.J.: Fields of experts. Int. J. Comput. Vis. 82(2), 205-229 (2009) [35] Servieres, M.C.J., Normand, N., Subirats, P., Guedon, J.: Some links between continuous and discrete Radon transform. In: Fitzpatrick, J.M., Sonka, M. (eds.) Medical Imaging 2004: Image Processing, vol. 5370, pp. 1961-1971. SPIE, WA, United States. International Society for Optics and Photonics (2004). https://doi.org/10.1117/12.533472 [36] Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR, pp. 9446-9454 (2018) [37] Wang, G., Ye, J.C., De Man, B.: Deep learning for tomographic image reconstruction. Nat. Mach. Intell. 2(12), 737-748 (2020). https://doi.org/10.1038/s42256-020-00273-z [38] Xiang, J., Dong, Y., Yang, Y.: FISTA-Net: learning a fast iterative shrinkage thresholding network for inverse problems in imaging. IEEE Trans. Med. Imaging 40(5), 1329-1339 (2021). https://doi.org/10.1109/TMI.2021.3054167 [39] Xu, M., Hu, D., Luo, F., Liu, F., Wang, S., Wu, W.: Limited-angle x-ray CT reconstruction using image gradient l0-norm with dictionary learning. IEEE Trans. Radiat. Plasma Med. Sci. 5(1), 78-87 (2021). https://doi.org/10.1109/TRPMS.2020.2991887 [40] Zhang, M., Gu, S., Shi, Y.: The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review. Complex Intell. Syst. 8, 5545-5561 (2022). https://doi.org/10.1007/s40747-022-00724-7 [41] Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487-492 (2018). https://doi.org/10.1038/nature25988 |