[1] Al-Raeei, M., El-Daher, M.S.: A numerical method for fractional Schrödinger equation of Lennard-Jones potential. Phys. Lett. A 383(26), 125831 (2019) [2] Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations. Comput. Phys. Commun. 184(12), 2621–2633 (2013) [3] Ashyralyev, A., Hicdurmaz, B.: On the numerical solution of fractional Schrödinger differential equations with the Dirichlet condition. Int. J. Comput. Math. 89(13/14), 1927–1936 (2012) [4] Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175(2), 487–524 (2002) [5] Bao, W., Jin, S., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes. SIAM J. Sci. Comput. 25(1), 27–64 (2003) [6] BayIn, S.: On the consistency of the solutions of the space fractional Schrödinger equation. J. Math. Phys. 53(4), 042105 (2012) [7] BayIn, S.: Definition of the Riesz derivative and its application to space fractional quantum mechanics. J. Math. Phys. 57(12), 123501 (2016) [8] Berry, M.V., Mount, K.: Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 35(1), 315 (1972) [9] Biccari, U., Aceves, A.B.: WKB expansion for a fractional Schrödinger equation with applications to controllability (2018). https://doi.org/10.48550/ARXIV.1809.08099 [10] Bisci, G.M., Rădulescu, V.D.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial. Differ. Equ. 54, 2985–3008 (2015) [11] Brack, M., Bhaduri, R.K.: Semiclassical Physics. CRC Press, Boca Raton (2018) [12] Brumfiel, G.: Laser makes molecules super-cool. Nature 2010, 1 (2010) [13] Chand, P., Hoekstra, J.: A review of the semi-classical WKB approximation and its usefulness in the study of quantum systems. In: Proceedings of the of IEEE Semiconductor Advances for Future Electronics, pp. 13–19 (2001) [14] Cheng, M.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53(4), 043507 (2012) [15] De Oliveira, E.C., Costa, F.S., Vaz, J., Jr.: The fractional Schrödinger equation for delta potentials. J. Math. Phys. 51(12), 123517 (2010) [16] Dong, J., Xu, M.: Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 48(7), 072105 (2007) [17] Dong, J., Xu, M.: Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008) [18] Edeki, S., Akinlabi, G., Adeosun, S.: Analytic and numerical solutions of time-fractional linear Schrödinger equation. Commun. Math. Appl. 7(1), 1–10 (2016) [19] Engquist, B., Runborg, O.: Computational high frequency wave propagation. Acta Numer. 12, 181–266 (2003) [20] Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965) [21] Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47(8), 082104 (2006) [22] Herrmann, R.: The fractional symmetric rigid rotor. J. Phys. G: Nucl. Part. Phys. 34(4), 607–625 (2007) [23] Jiang, G., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000) [24] Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996) [25] Jiang, X., Qi, H., Xu, M.: Exact solutions of fractional Schrödinger-like equation with a nonlocal term. J. Math. Phys. 52(4), 042105 (2011) [26] Kao, C., Osher, S., Qian, J.: Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations. J. Comput. Phys. 196(1), 367–391 (2004) [27] Katori, H., Schlipf, S., Walther, H.: Anomalous dynamics of a single ion in an optical lattice. Phys. Rev. Lett. 79, 2221–2224 (1997) [28] Keller, J.B.: Semiclassical mechanics. SIAM Rev. 27(4), 485–504 (1985) [29] Kramer, G.J., Farragher, N.P., van Beest, B.W.H., van Santen, R.A.: Interatomic force fields for silicas, aluminophosphates, and zeolites: derivation based on ab initio calculations. Phys. Rev. B 43, 5068–5080 (1991) [30] Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002) [31] Laskin, N.: Time fractional quantum mechanics. Chaos Solitons Fractals 102, 16–28 (2017). (Future directions in fractional calculus research and applications) [32] Laskin, N.: Fractional Quantum Mechanics. World Scientific, Singapore (2018) [33] Lenzi, E., Ribeiro, H., dos Santos, M., Rossato, R., Mendes, R.: Time dependent solutions for a fractional Schrödinger equation with delta potentials. J. Math. Phys. 54(8), 082107 (2013) [34] Lim, S.C.: Fractional derivative quantum fields at positive temperature. Physica A 363(2), 269–281 (2006) [35] Liu, X., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994) [36] Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40(6), 1117–1120 (2015) [37] Luchko, Y.: Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 54(1), 012111 (2013) [38] Luo, S., Qian, J.: Factored singularities and high-order Lax-Friedrichs sweeping schemes for point-source travel times and amplitudes. J. Comput. Phys. 230(12), 4742–4755 (2011) [39] Luo, S., Qian, J., Zhao, H.: Higher-order schemes for 3D first-arrival travel times and amplitudes. Geophysics 77(2), T47–T56 (2012) [40] Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis. Springer, New York (2002) [41] Maslov, V.P., Fedoriuk, M.V.: Semi-classical Approximation in Quantum Mechanics. D. Reidel Publishing Company, Dordrecht (1981) [42] Muslih, S.I., Agrawal, O.P., Baleanu, D.: A fractional Schrödinger equation and its solution. Int. J. Theor. Phys. 49(8), 1746–1752 (2010) [43] Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339–3352 (2004) [44] Odibat, Z., Momani, S., Alawneh, A.: Analytic study on time-fractional Schrödinger equations: exact solutions by GDTM. J. Phys.: Conf. Ser. 96, 012066 (2008) [45] Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991) [46] Pozrikidis, C.: The Fractional Laplacian. Chapman and Hall/CRC, Boca Raton (2016) [47] Purohit, S.: Solutions of fractional partial differential equations of quantum mechanics. Adv. Appl. Math. Mech. 5(5), 639–651 (2013) [48] Ros-Oton, X., Serra, J.: The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal. 213(2), 587–628 (2014) [49] Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926) [50] Shi, H., Chen, H.: Multiple solutions for fractional Schrödinger equations. Electron. J. Differ. Equ. 25(2015), 1–11 (2015) [51] Shu, C.-W.: High-order numerical methods for time-dependent Hamilton-Jacobi equations. In: Mathematics and Computation in Imaging Science and Information Processing. pp. 47–91. World Scientific, Singapore(2007) [52] Tayurskii, D., Lysogorskiy, Y.: Quantum fluids in nanoporous media-effects of the confinement and fractal geometry. Chin. Sci. Bull. 56, 3617–3622 (2011) [53] van Beest, B.W.H., Kramer, G.J., van Santen, R.A.: Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990) [54] Wang, S., Xu, M.: Generalized fractional Schrödinger equation with space-time fractional derivatives. J. Math. Phys. 48(4), 043502 (2007) [55] Zhang, Y., Zhao, H., Qian, J.: High-order fast sweeping methods for static Hamilton-Jacobi equations. J. Sci. Comput. 29(1), 25–56 (2006) [56] Zhang, Y., Zhong, H., Belić, M.R., Ahmed, N., Zhang, Y., Xiao, M.: Diffraction-free beams in fractional Schrödinger equation. Sci. Rep. 6(1), 23645 (2016) |