1. Adams, R.A., Fournier, J.F.: Sobolev Spaces. Academic Press, New York (2009) 2. Aytekin, C., Kaya, S.: A projection-based stabilized finite element for steady-state natural convection problem. J. Math. Anal. Appl. 381, 469–484 (2011) 3. Benítez, M., Bermúdez, A.: A second order characteristic finite element scheme for natural convection problems. J. Comput. Appl. Math. 235, 3270–3284 (2011) 4. Blake, K.R., Poulikakos, D., Bejan, A.: Natural convection near 4℃ in a horizontal water layer heated from blows. Phys. Fluids 27, 2606–2616 (1984) 5. Boland, J., Layton, W.: An analysis of the finite element for natural convection problems. Numer. Methods Partial Differations Equations 6, 115–126 (1990) 6. Boland, J., Layton, W.: Error analysis for finite element methods for steady natural convection problems. Numer. Funct. Anal. Optim. 11, 449–483 (1990) 7. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994) 8. Capone, F., Gentile, M., Hill, A.A.: Penetrative convection in a fluid layer with through-flow. Ric. Mat. 57, 251–260 (2008) 9. Carr, M., de Putter, S.: Penetrative convection in a horizontallt isotropic porous layer. Continum Mech. Theromodyn. 15, 33–43 (2003) 10. Crouzeix, M., Thomée, V.: The stability in Lp and Wp1 of the L2-projection onto finite element function spaces. Math. Comp. 48, 521–532 (1987) 11. Franchi, F.: Stabilization estimates for penetrative motions in porous media. Math. Methods. Appl. Sci. 17, 11–20 (1994) 12. Girault, V., Nochetto, R., Scott, R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84, 279–330 (2005) 13. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer, Berlin (1986) 14. Goren, L.: On free convection in water at 4℃. Chem. Eng. Sci. 21, 515–518 (1966) 15. Heywood, J., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990) 16. Hou, Y.Y., Yan, W.J., Jing, F.F.: Numerical analysis of the unconditionally stable discontinuous Galerkin schemes for the nonstationary conduction-convection problem. Comput. Math. Appl. 80, 1479– 1499 (2020) 17. Huang, P.Z., Zhao, J.P., Feng, X.L.: Highly efficient and local projection-based stabilized finite element method for natural convection problem. Int. J. Heat Mass Trans. 83, 357–365 (2015) 18. Jiji, L.M.: Heat Convection. Springer, Berlin Heidelberg, Berlin (2006) 19. Li, B.Y., Gao, H.D., Sun, W.W.: Unconditionally optimal error estimates of a Crank-Nicolson Galerkin method for the nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014) 20. Liu, Q., Shi, D.Y.: New error analysis of a second order BDF scheme for unsteady natural convection problem. Appl. Numer. Math. 154, 243–259 (2020) 21. Luo, Z.D.: The mixed finite element method for the nonstationary conduction-convection problems. Numer. Math. Sin. 20, 69–88 (1998) 22. Luo, Z.D., Chen, J., Navon, I.M., Zhu, J.: An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. Int. J. Numer. Meth. Fluids 60, 409–436 (2009) 23. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002) 24. Mellor, G.L., Yamada, T.: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophysics 20, 851–875 (1982) 25. Mussman, S.: Penetrative convection. J. Fluid Mech. 31, 343–360 (1968) 26. Payne, L.E., Song, J.C., Straughan, B.: Double diffusive porous penetrative convection-thawing subsea permafrost. Inter. J. Eng. Sci. 26, 797–809 (1998) 27. Pedlosky, J.: Geophysical Fluid Dynamics. Springer-Verlag, New York (1987) 28. Ravindran, S.S.: Convergence of extrapolated BDF2 finite element schemes for unsteady penetrative convection model. Numer. Func. Anal. Optim. 33, 48–79 (2012) 29. Rebollo, T.C., Mármol, M.G., Hecht, F., Rubino, S., Munoz, I.S.: A high-order local projection stabilization method for natural convection problems. J. Sci. Comput. 74, 667–692 (2018) 30. Si, Z.Y., Song, X., Huang, P.Z.: Modified characteristic Gauge-Uzawa finite element method for time dependent conduction-convection problems. J. Sci. Comput. 58, 1–24 (2014) 31. Straughan, B.: Continuous dependence on the heat source and non-linear stability in penetrative convection. Inter. J. Nonlinear Mech. 26, 221–231 (1991) 32. Veronis, G.: Penetrative convection. Astrophysical J. 137, 641–663 (1963) 33. Zhang, X.H., Zhang, P.: Meshless modeling of natural convection problems in non-rectangular cavity using the variational multiscale element free Galerkin method. Eng. Anal. Bound. Elem. 61, 287–300 (2015) 34. Zhang, Y.Z., Hou, Y.R., Zhao, J.P.: Error analysis of a fully discrete finite element variational multiscale method for the natural convection problem. Comput. Math. Appl. 68, 543–567 (2014) 35. Zhao, K., He, Y.N., Zhang, T.: A stabilized finite element method for non-stationary conduction-convection problems. Adv. Appl. Math. Mech. 3, 239–258 (2011) |