Communications on Applied Mathematics and Computation ›› 2024, Vol. 6 ›› Issue (4): 2215-2238.doi: 10.1007/s42967-023-00338-x
• ORIGINAL PAPERS • Previous Articles Next Articles
Mária Lukáčová-Medvid'ová1, Yuhuan Yuan2
Received:
2023-07-03
Revised:
2023-09-18
Accepted:
2023-10-07
Published:
2024-12-20
Contact:
Yuhuan Yuan,E-mail:yuhuanyuan@nuaa.edu.cn;Mária Lukáčová-Medvid’ová,E-mail:lukacova@uni-mainz.de
E-mail:yuhuanyuan@nuaa.edu.cn;lukacova@uni-mainz.de
Supported by:
Mária Lukáčová-Medvid'ová, Yuhuan Yuan. Convergence of a Generalized Riemann Problem Scheme for the Burgers Equation[J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2215-2238.
1. Ball, J.M.: A version of the fundamental theorem for young measures. In: PDEs and Continuum Models of Phase Transitions, pp. 207-215. Springer, Berlin (1989) 2. Ben-Artzi, M., Falcovitz, J., Li, J.: The convergence of the GRP scheme. Discrete Contin. Dyn. Syst. 23, 1-27 (2009) 3. Ben-Artzi, M., Li, J.: Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem. Numer. Math. 106(3), 369-425 (2007) 4. Ben-Artzi, M., Li, J.: Consistency of finite volume approximations to nonlinear hyperbolic balance laws. Math. Comput. 90(327), 141-169 (2021) 5. Ben-Artzi, M., Li, J., Warnecke, G.: A direct Eulerian GRP scheme for compressible fluid flows. J. Comput. Phys. 218(1), 19-43 (2006) 6. Bressan, A., Crasta, G., Piccoli, B.: Well-Posedness of the Cauchy Problem for n×n Systems of Conservation Laws. Memoirs of the American Mathematical Society, London (2000) 7. Bressan, A., Lewicka, M.: A uniqueness condition for hyperbolic systems of conservation laws. Discrete Contin. Dyn. Syst. 6(3), 673-682 (2000) 8. Cancès, C., Mathis, H., Seguin, N.: Error estimate for time-explicit finite volume approximation of strong solutions to systems of conservation laws. SIAM J. Numer. Anal. 54(2), 1263-1287 (2016) 9. Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157-1190 (2015) 10. Chiodaroli, E., Kreml, O., Mácha, V., Schwarzacher, S.: Non-uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data. Trans. Am. Math. Soc. 374(4), 2269- 2295 (2021) 11. De Lellis, C., Székelyhidi, L., Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225-260 (2010) 12. DiPerna, R.J.: Measure-valued solutions to conservation laws. Arch. Ration. Mech. Anal. 88(3), 223- 270 (1985) 13. Feireisl, E., Klingenberg, C., Kreml, O., Markfelder, S.: On oscillatory solutions to the complete Euler system. J. Differential Equations 269(2), 1521-1543 (2020) 14. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions. Found. Comput. Math. 20(4), 923-966 (2020) 15. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H.: A finite volume scheme for the Euler system inspired by the two velocities approach. Numer. Math. 144(1), 89-132 (2020) 16. Feireisl, E., Lukáčová-Medvid’ová, M., Mizerová, H., She, B.: Numerical Analysis of Compressible Flows. MS & A Series, vol. 20. Springer, Lodnon (2021) 17. Fjordholm, U.K., Käppeli, R., Mishra, S., Tadmor, E.: Construction of approximate entropy measurevalued solutions for hyperbolic systems of conservation laws. Found. Comput. Math. 17(3), 763-827 (2017) 18. Fjordholm, U.S., Mishra, S., Tadmor, E.: ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 13, 139-159 (2013) 19. Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numer. 25, 567-679 (2016) 20. Jovanović, V., Rohde, Ch.: Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws. SIAM J. Numer. Anal. 43(6), 2423-2449 (2006) 21. Kröner, D., Noelle, S., Rokyta, M.: Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions. Numer. Math. 71, 527- 560 (1995) 22. Kröner, D., Rokyta, M.: Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31(2), 324-343 (1994) 23. Kružkov, S.: First order quasilinear equations in several independent variables. USSR Math. Sbornik 10(2), 217-243 (1970) 24. Li, J., Du, Z.F.: A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers I. Hyperbolic conservation laws. SIAM J. Sci. Comput. 38(5), A3046-A3069 (2016) 25. Lukáčová-Medvid’ová, M., Yuan, Y.: Convergence of first-order finite volume method based on exact Riemann solver for the complete compressible Euler equations. Numer. Methods Partial Differential Equations 39(5), 3777-3810 (2023) 26. Lukáčová-Medvid’ová, M., She, B., Yuan, Y.: Error estimates of the Godunov method for the multidimensional compressible Euler system. J. Sci. Comput. 91(3), Paper No. 71 (2022) |
[1] | Matania Ben-Artzi, Jiequan Li. Hyperbolic Conservation Laws, Integral Balance Laws and Regularity of Fluxes [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2048-2063. |
[2] | Wasilij Barsukow, Jonas P. Berberich. A Well-Balanced Active Flux Method for the Shallow Water Equations with Wetting and Drying [J]. Communications on Applied Mathematics and Computation, 2024, 6(4): 2385-2430. |
[3] | Yifan Chen, Thomas Y. Hou, Yixuan Wang. Exponentially Convergent Multiscale Finite Element Method [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 862-878. |
[4] | Wes Whiting, Bao Wang, Jack Xin. Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent [J]. Communications on Applied Mathematics and Computation, 2024, 6(2): 1175-1188. |
[5] | Xuechun Liu, Haijin Wang, Jue Yan, Xinghui Zhong. Superconvergence of Direct Discontinuous Galerkin Methods: Eigen-structure Analysis Based on Fourier Approach [J]. Communications on Applied Mathematics and Computation, 2024, 6(1): 257-278. |
[6] | Changpin Li, Dongxia Li, Zhen Wang. L1/LDG Method for the Generalized Time-Fractional Burgers Equation in Two Spatial Dimensions [J]. Communications on Applied Mathematics and Computation, 2023, 5(4): 1299-1322. |
[7] | R. Abgrall, J. Nordström, P. Öffner, S. Tokareva. Analysis of the SBP-SAT Stabilization for Finite Element Methods Part II: Entropy Stability [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 573-595. |
[8] | Johannes Markert, Gregor Gassner, Stefanie Walch. A Sub-element Adaptive Shock Capturing Approach for Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 679-721. |
[9] | J. C. González-Aguirre, J. A. González-Vázquez, J. Alavez-Ramírez, R. Silva, M. E. Vázquez-Cendón. Numerical Simulation of Bed Load and Suspended Load Sediment Transport Using Well-Balanced Numerical Schemes [J]. Communications on Applied Mathematics and Computation, 2023, 5(2): 885-922. |
[10] | Xucheng Meng, Yaguang Gu, Guanghui Hu. A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries [J]. Communications on Applied Mathematics and Computation, 2023, 5(1): 315-342. |
[11] | Liang Li, Jun Zhu, Chi-Wang Shu, Yong-Tao Zhang. A Fixed-Point Fast Sweeping WENO Method with Inverse Lax-Wendroff Boundary Treatment for Steady State of Hyperbolic Conservation Laws [J]. Communications on Applied Mathematics and Computation, 2023, 5(1): 403-427. |
[12] | Xiaoying Han, Habib N. Najm. Modeling Fast Diffusion Processes in Time Integration of Stiff Stochastic Differential Equations [J]. Communications on Applied Mathematics and Computation, 2022, 4(4): 1457-1493. |
[13] | Xiaozhou Li. How to Design a Generic Accuracy-Enhancing Filter for Discontinuous Galerkin Methods [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 759-782. |
[14] | Mohammed Homod Hashim, Akil J. Harfash. Finite Element Analysis of Attraction-Repulsion Chemotaxis System. Part I: Space Convergence [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 1011-1056. |
[15] | Mohammed Homod Hashim, Akil J. Harfash. Finite Element Analysis of Attraction-Repulsion Chemotaxis System. Part II: Time Convergence, Error Analysis and Numerical Results [J]. Communications on Applied Mathematics and Computation, 2022, 4(3): 1057-1104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||