[1] Angeles, J.: The dual generalized inverses and their applications in kinematic synthesis. In: Latest Advances in Robot Kinematics, pp. 1–12. Springer, Dordrecht (2012) [2] Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1994) [3] Chen, M.-F., Chen, R.-R.: Top eigenpairs of large scale matrices. CSIAM Trans. Appl. Math. 3(1), 1–25 (2022) [4] Chen, M.-F., Jia, Z.-G., Pang, H.-K.: Computing top eigenpairs of Hermitizable matrix. Front. Math. China 16, 345–379 (2021) [5] Ching, W.K., Fung, E.S., Ng, M.K.: A higher-order Markov model for the Newsboy’s problem. J. Oper. Res. Soc. 54, 291–298 (2003) [6] Ching, W.K., Huang, X., Ng, M.K., Siu, T.K.: Markov Chains: Models, Algorithms and Applications. Springer, New York (2006) [7] Cui, C., Qi, L.: A power method for computing the dominant eigenvalue of a dual quaternion Hermitian matrix (2023). arXiv:2304.04355 [8] Gu, Y.L., Luh, L.: Dual-number transformation and its applications to robotics. IEEE J. Robot. Autom. 3, 615–623 (1987) [9] Horn, R., Johnson, C.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2012) [10] Li, W., Cui, L.-B., Ng, M.K.: The perturbation bound for the Perron vector of a transition probability tensor. Numer. Linear Algebra Appl. 20, 985–1000 (2013) [11] Mitrophanov, A.Y.: Sensitivity and convergence of uniformly ergodic Markov chains. J. Appl. Probab. 42(4), 1003–1014 (2005) [12] Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a nonnegative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009) [13] Pennestri, E., Valentini, P.P.: Linear dual algebra algorithms and their applications to kinematics. In: Multibody Dynamics, pp. 207–229. Springer, Dordrecht (2009) [14] Pennestri, E., Valentini, P.P., De Falco, D., Angeles, J.: Dual Cayley-Klein parameters and Möbius transform: theory and applications. Mech. Mach. Theory 106, 50–67 (2016) [15] Qi, L., Alexander, D.M., Chen, Z., Ling, C., Luo, Z.: Low rank approximation of dual complex matrices (2022). arXiv:2201.12781 [16] Qi, L., Cui, C.: Eigenvalues and Jordan forms of dual complex matrices. Commun. Appl. Math. Comput. (2023). https://doi.org/10.1007/s42967-023-00299-1 [17] Qi, L., Ling, C., Yan, H.: Dual quaternions and dual quaternion vectors. Commun. Appl. Math. Comput. 4, 1494–1508 (2022) [18] Qi, L., Luo, Z.: Eigenvalues and singular value decomposition of dual complex matrices (2021). arXiv:2110.02050 [19] Qi, L., Luo, Z.: Eigenvalues and singular values of dual quaternion matrices. Pac. J. Optim. 19, 257–272 (2023) [20] Varga, R.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962) [21] Wang, H.: Characterization and properties of the MPDGI and DMPGI. Mech. Mach. Theory 158, 104212 (2021) [22] Wang, H., Cui, C., Wei, Y.: The QLY least-squares and the QLY least-squares minimal-norm of linear dual least squares problems. Linear Multilinear Algebra (2023). https://doi.org/10.1080/03081087.2023.2223348 [23] Wei, T., Ding, W., Wei, Y.: Singular value decomposition of dual matrices and its application to traveling wave identification in the brain. J. Matrix Anal. Appl. 45(1), 634–660 (2023). arXiv:2303.01383 [24] Wei, Y.: Perturbation analysis of singular linear systems with index one. Int. J. Comput. Math. 74(4), 483–491 (2000) [25] Zhang, L., Qi, L., Xu, Y.: Linear convergence of the LZI algorithm for weakly positive tensors. J. Comput. Math. 30, 24–33 (2012) [26] Zhou, J., Wei, Y.: Perturbation analysis of singular linear systems with arbitrary index. Appl. Math. Comput. 145(2/3), 297–305 (2003) |