1. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997) 2. Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Massa, F.: Linearly implicit Rosenbrock-type RungeKutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows. Comput. Fluids 118, 305–320 (2015) 3. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 272, 47–78 (1972) 4. Boscarino, S., LeFloch, P.-G., Russo, G.: On a class of uniformly accurate IMEX Runge-Kutta schemes and application to hyperbolic systems with relaxation. SIAM J. Sci. Comput. 36, 377–395 (2014) 5. Cavaliere, P., Zavarise, G., Perillo, M.: Modeling of the carburizing and nitriding processes. Comput. Mater. Sci. 46, 26–35 (2009) 6. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convectiondiffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998) 7. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001) 8. Douglas, J., Jr., Dupont, T.: Alternating-direction Galerkin methods on rectangles. In: Numerical Solution of Partial Differential Equations-II, pp. 133–214. Academic Press, New York (1971) 9. Duchemin, L., Eggers, J.: The explicit-implicit-null method: removing the numerical instability of PDEs. J. Comput. Phys. 263, 37–52 (2014) 10. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229, 7625–7648 (2010) 11. Giraldo, F.X., Kelly, J.F., Constantinescu, E.M.: Implicit-explicit formulations of a three-dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comput. 35, B1162–B1194 (2013) 12. Shi, H., Li, Y.: Local discontinuous Galerkin methods with implicit-explicit multistep time-marching for solving the nonlinear Cahn-Hilliard equation. J. Comput. Phys. 394, 719–731 (2019) 13. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 439–456 (2003) 14. Tan, M., Cheng, J., Shu, C.-W.: Stability of high order finite difference and local discontinuous Galerkin schemes with explicit-implicit-null time-marching for high order dissipative and dispersive equations. J. Comput. Phys. 464, 111314 (2022) 15. Tan, M., Cheng, J., Shu, C.-W.: Stability of spectral collocation schemes with explicit-implicit-null time-marching for convection-diffusion and convection-dispersion equations. East Asian J. Appl. Math. 13, 464–498 (2023) 16. Wang, H., Zhang, Q., Wang, S., Shu, C.-W.: Local discontinuous Galerkin methods with explicitimplicit-null time discretizations for solving nonlinear diffusion problems. Sci. China Math. 63, 183– 204 (2020) 17. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for three classes of nonlinear wave equations. J. Comput. Math. 22, 250–274 (2004) 18. Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012) 19. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40, 769–791 (2002) 20. Yan, J., Shu, C.-W.: A local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002) 21. Zhang, Q., Wu, Z.: Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method. J. Sci. Comput. 38, 127–148 (2009) |