1. Boscarino, S.: Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal. 45(4), 1600–1621 (2006) 2. Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial differential equations. J. Sci. Comput. 68(8), 975–1001 (2016) 3. Boscarino, S., Pareschi, L., Russo, G.: A unified IMEX Runge-Kutta approach for hyperbolic systems with multiscale relaxation. SIAM J. Numer. Anal. 55(4), 2085–2109 (2017) 4. Broadwell, J.E.: Shock structure in a simple discrete velocity gas. Phys. Fluids 7(8), 1243–1247 (1964) 5. Carrillo, H., Macca, E., Parés, C., Russo, G.: Well-balanced adaptive compact approximate Taylor methods for systems of balance laws. J. Comput. Phys. 478, 111979 (2023) 6. Carrillo, H., Macca, E., Parés, C., Russo, G., Zorío, D.: An order-adaptive compact approximate Taylor method for systems of conservation law. J. Comput. Phys. 438, 31 (2021) 7. Carrillo, H., Parés, C.: Compact approximate Taylor methods for systems of conservation laws. J. Sci. Comput. 80, 1832–1866 (2019) 8. Ciarlet, P.G.: Discrete maximum principle for finite-difference operators. Aequ. Math. 4, 338–352 (1970) 9. Clain, S., Diot, S., Loubère, R.: A high-order finite volume method for systems of conservation laws— multi-dimensional optimal order detection (MOOD). J. Comput. Sci. 230(10), 4028–4050 (2011) 10. Clain, S., Diot, S., Loubère, R.: Multi-dimensional optimal order detection (MOOD)—a very highorder finite volume scheme for conservation laws on unstructured meshes. In: Springer Proceedings in Mathematics, vol. 4, pp. 263–271 (2011) 11. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100(1), 32–74 (1928) 12. Diot, S., Clain, S., Loubère, R.: Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids 64, 43–63 (2012) 13. Diot, S., Loubère, R., Clain, S.: The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems. Int. J. Numer. Methods Fluids 73, 362–392 (2013) 14. Hundsdorfer, W., Verwer, J.: Numerical solution of time-dependent advection-diffusion-reaction equations. In: Springer Series in Computational Mathematics, SSCM, vol. 33 (2003) 15. Jin, S.: Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122(1), 51–67 (1995) 16. Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. In: Lecture Notes for Summer School on Methods and Models of Kinetic Theory (M&MKT), Porto Ercole (Grosseto, Italy), pp. 177–216 (2010) 17. Lax, P., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13(2), 217–237 (1960) 18. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics), 1st edn. Society for Industrial and Applied Mathematics, Philadelpia (2007) 19. Loubère, R., Macca, E., Parés, C., Russo, G.: CAT-MOOD methods for conservation laws in one space dimension. In: Parés, C., Castro, M.J., Muñoz, M.L., Morales de Luna, T., (eds.) Theory, Numerics and Applications of Hyperbolic Problems. SEMA-SIMAI Springer Series. Proceedings of HYP2022 (2024) 20. Macca, E.: Shock-Capturing Methods: Well-Balanced Approximate Taylor and Semi-implicit Schemes. PhD thesis, Università degli Studi di Palermo, Palermo (2022) 21. Macca, E., Avgerinos, S., Castro, M.J., Russo, G.: A semi-implicit finite volume method for the Exner model of sediment transport. J. Comput. Phys. 499, 112714 (2024) 22. Macca, E., Loubere, R., Pares, C., Russo, G.: An almost fail-safe a-posteriori limited high-order CAT scheme. J. Comput. Phys. 498, 112650 (2024) 23. Macca, E., Russo, G.: Boundary effects on wave trains in the Exner model of sedimental transport. Bollettino dell’ Unione Matematica Italiana 17(2), 417–433 (2024) 24. MacCormack, R.W.: The effect of viscosity in hypervelocity impact cratering. AIAA Paper, Cincinnati, OH, pp. 69–354 (1969) 25. Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005) 26. Qiu, J., Shu, C.-W.: Finite difference WENO schemes with Lax-Wendroff-type time discretizations. SIAM J. Sci. Comput. 24(6), 2185–2198 (2003) 27. Richtmyer, R.D., Morton, K.W.: Difference methods for initial-value problems. In: Interscience Tracts in Pure and Applied Mathematics. Interscience, New York (1967) 28. Schwartzkopff, T., Munz, C., Toro, E.: ADER: a high-order approach for linear hyperbolic systems in 2D. J. Sci. Comput. 17, 231–240 (2002) 29. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Technical report, Institute for Computer Applications in Science and Engineering (ICASE) (1997) 30. Titarev, V., Toro, E.: ADER: arbitrary high order Godunov approach. J. Sci. Comput. 17, 609–618 (2002) 31. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edn. Springer, Berlin (2009) 32. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1996) 33. Zorío, D., Baeza, A., Mulet, P.: An approximate Lax-Wendroff-type procedure for high order accurate scheme for hyperbolic conservation laws. J. Sci. Comput. 71(1), 246–273 (2017) |