[1] Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30 (2020). OpenReview.net [2] Balcan, M.-F., Beygelzimer, A., Langford, J.: Agnostic active learning. In: Proceedings of the 23rd International Conference on Machine Learning. ICML’06, pp. 65-72. Association for Computing Machinery, Pittsburgh, Pennsylvania, USA (2006). https://doi.org/10.1145/1143844.1143853 [3] Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399-2434 (2006) [4] Belongie, S., Fowlkes, C., Chung, F., Malik, J.: Spectral partitioning with indefinite kernels using the Nyström extension. In: Goos, G., Hartmanis, J., van Leeuwen, J., Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) Computer Vision, pp. 531-542. Springer, Berlin, Heidelberg (2002) [5] Bertozzi, A.L., Flenner, A.: Diffuse interface models on graphs for classification of high dimensional data. SIAM Rev. 58(2), 293-328 (2016). https://doi.org/10.1137/16M1070426 [6] Bertozzi, A.L., Hosseini, B., Li, H., Miller, K., Stuart, A.M.: Posterior consistency of semi-supervised regression on graphs. Inverse Prob. 37(10), 105011 (2021). https://doi.org/10.1088/1361-6420/ac1e80 [7] Bertozzi, A.L., Luo, X., Stuart, A.M., Zygalakis, K.C.: Uncertainty quantification in graph-based classification of high dimensional data. SIAM/ASA J. Uncertain. Quantif. 6(2), 568-595 (2018). https://doi.org/10.1137/17M1134214 [8] Bertozzi, A.L., Merkurjev, E.: Graph-based optimization approaches for machine learning, uncertainty quantification and networks. In: Kimmel, R., Tai, X.-C. (eds.) Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2 Handbook of Numerical Analysis, pp. 503-531. Elsevier, Amsterdam, Netherlands (2019) [9] Cai, W., Zhang, M., Zhang, Y.: Batch mode active learning for regression with expected model change. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1668-1681 (2017). https://doi.org/10.1109/TNNLS.2016.2542184 [10] Cai, W., Zhang, Y., Zhou, J.: Maximizing expected model change for active learning in regression. In: 2013 IEEE 13th International Conference on Data Mining, pp. 51-60 (2013). https://doi.org/10.1109/ICDM.2013.104 [11] Calder, J., Cook, B., Thorpe, M., Slepčev, D.: Poisson learning: graph-based semi-supervised learning at very low label rates. In: Proceedings of the 37th International Conference on Machine Learning, pp. 1306-1316. Proceedings of Machine Learning Research, Online (2020) [12] Chaloner, K., Verdinelli, I.: Bayesian experimental design: a review. Stat. Sci. 10(3), 273-304 (1995). https://doi.org/10.1214/ss/1177009939 [13] Chen, B., Miller, K., Bertozzi, A., Schwenk, J.: Graph-based active learning for surface water and sediment detection in multispectral images (2022). Submitted to IEEE Transactions on Geoscience and Remote Sensing [14] Cohn, D., Atlas, L., Ladner, R.: Improving generalization with active learning. Mach. Learn. 15(2), 201-221 (1994). https://doi.org/10.1007/BF00993277 [15] Dasarathy, G., Nowak, R., Zhu, X.: S2: an efficient graph based active learning algorithm with application to nonparametric classification. In: Conference on Learning Theory, pp. 503-522 (2015) [16] Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. In: Proceedings of the 25th International Conference on Machine Learning. ICML’08, pp. 208-215. Association for Computing Machinery, Helsinki, Finland (2008). https://doi.org/10.1145/1390156.1390183 [17] Fedorov, V.: Theory of Optimal Experiments Designs. Probability and Mathematical Statistics. Academic Press, Cambridge, Massachusetts, USA (1972) [18] Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nystrom method. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214-225 (2004). https://doi.org/10.1109/TPAMI.2004.1262185 [19] Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: Proceedings of the 34th International Conference on Machine Learning, pp. 1183-1192. Journal of Machine Learning Research, Sydney, Australia (2017) [20] Garcia-Cardona, C., Merkurjev, E., Bertozzi, A.L., Flenner, A., Percus, A.G.: Multiclass data segmentation using diffuse interface methods on graphs. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1600-1613 (2014). https://doi.org/10.1109/TPAMI.2014.2300478 [21] García Trillos, N., Hoffmann, F., Hosseini, B.: Geometric structure of graph Laplacian embeddings. J. Mach. Learn. Res. 22(63), 1-55 (2021) [22] Guillory, A., Bilmes, J.: Interactive submodular set cover. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp. 415-422 (2010) [23] Hoffmann, F., Hosseini, B., Ren, Z., Stuart, A.M.: Consistency of semi-supervised learning algorithms on graphs: probit and one-hot methods. J. Mach. Learn. Res. 21(186), 1-55 (2020) [24] Hoi, S.C.H., Jin, R., Zhu, J., Lyu, M.R.: Semi-supervised SVM batch mode active learning for image retrieval. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-7 (2008). https://doi.org/10.1109/CVPR.2008.4587350 [25] Houlsby, N., Huszár, F., Ghahramani, Z., Lengyel, M.: Bayesian active learning for classification and preference learning. arXiv:1112.5745 (2011) [26] Ji, M., Han, J.: A variance minimization criterion to active learning on graphs. In: Artificial Intelligence and Statistics, pp. 556-564 (2012) [27] Jiang, B., Zhang, Z., Lin, D., Tang, J., Luo, B.: Semi-supervised learning with graph learning-convolutional networks. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11305-11312 (2019). https://doi.org/10.1109/CVPR.2019.01157 [28] Jiang, H., Gupta, M.R.: Bootstrapping for batch active sampling. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3086-3096. Association for Computing Machinery, New York, USA (2021). https://doi.org/10.1145/3447548.3467076 [29] Jun, K.-S., Nowak, R.: Graph-based active learning: a new look at expected error minimization. In: 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 2016, pp.1325-1329 (2016). https://doi.org/10.1109/GlobalSIP.2016.7906056 [30] Karzand, M., Nowak, R.D.: MaxiMin active learning in overparameterized model classes. IEEE J. Sel. Areas Inform. Theory 1(1), 167-177 (2020). https://doi.org/10.1109/JSAIT.2020.2991518 [31] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR (2017) [32] Krause, A., Golovin, D.: Submodular function maximization. In: Bordeaux, L., Hamadi, Y., Kohli, P., Mateescu, R. (eds.) Tractability, pp. 71-104. Cambridge University Press, Cambridge (2013) [33] Kushnir, D., Venturi, L.: Diffusion-based deep active learning. arXiv:2003.10339 (2020). Accessed 2020-06-11 [34] Lecun, Y., Cortes, C., Burges, C.C.J.: The MNIST Database of Handwritten Digits (2010). http://yann.lecun.com/exdb/mnist/ [35] Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR’94, pp. 3-12. Springer, Berlin, Heidelberg (1994) [36] Long, J., Yin, J., Zhao, W., Zhu, E.: Graph-based active learning based on label propagation. In: Torra, V., Narukawa, Y. (eds.) Modeling Decisions for Artificial Intelligence, pp. 179-190. Springer, Berlin, Heidelberg (2008) [37] Ma, Y., Garnett, R., Schneider, J.: Σ-optimality for active learning on Gaussian random fields. Adv. Neural Inform. Process. Syst. 26, 2751-2759 (2013) [38] Ma, Y., Huang, T.-K., Schneider, J.G.: Active search and bandits on graphs using Σ-optimality. In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) (2015) [39] Maggioni, M., Murphy, J.M.: Learning by active nonlinear diffusion. Found. Data Sci. 1(3), 271 (2019). https://doi.org/10.3934/fods.2019012 [40] Merkurjev, E., Kostić, T., Bertozzi, A.L.: An MBO scheme on graphs for classification and image processing. SIAM J. Imag. Sci. 6(4), 1903-1930 (2013). https://doi.org/10.1137/120886935 [41] Miller, K., Li, H., Bertozzi, A.L.: Efficient graph-based active learning with probit likelihood via Gaussian approximations. In: ICML Workshop on Real-World Experiment Design and Active Learning (2020) [42] Mirzasoleiman, B.: Big data summarization using submodular functions. PhD thesis, ETH Zurich (2017) [43] Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14(1), 265-294 (1978) [44] Qiao, Y.-L., Shi, C.X., Wang, C., Li, H., Haberland, M., Luo, X., Stuart, A.M., Bertozzi, A.L.: Uncertainty quantification for semi-supervised multi-class classification in image processing and ego-motion analysis of body-worn videos. Image Process. Algorithms Syst. (2019). https://doi.org/10.2352/issn.2470-1173.2019.11.ipas-264 [45] Qiao, Y., Shi, C., Wang, C., Li, H., Haberland, M., Luo, X., Stuart, A.M., Bertozzi, A.L.: Uncertainty quantification for semi-supervised multi-class classification in image processing and ego-motion analysis of body-worn videos. Electron. Imaging 2019(11), 264 (2019). https://doi.org/10.2352/ISSN.2470-1173.2019.11.IPAS-264 [46] Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, Mass (2006) [47] Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=H1aIuk-RW [48] Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Springer Nature, Switzerland (2012). https://doi.org/10.2200/S00429ED1V01Y201207AIM018 [49] Siméoni, O., Budnik, M., Avrithis, Y., Gravier, G.: Rethinking deep active learning: using unlabeled data at model training. In: Int. Conf. Patt. Recogn. (ICPR) (2021). https://doi.org/10.1109/ICPR48806.2021.9412716 [50] Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45-66 (2001) [51] Vapnik, V.N.: Statistical learning theory. In: Wiley Series in Adaptive and Learning Systems for Signal Processing, Communication and Control. Wiley, New York (1998) [52] von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395-416 (2007). https://doi.org/10.1007/s11222-007-9033-z [53] Williams, C.K.I., Seeger, M.: Using the Nyström method to speed Up kernel machines. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13, pp. 682-688. MIT Press (2001). http://papers.nips.cc/paper/1866-using-the-nystrom-method-to-speed-up-kernel-machines.pdf Accessed 2020-07-24 [54] Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neural Information Processing Systems 17, pp. 1601-1608. MIT Press, Cambridge, Massachusetts, USA (2004) [55] Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the Twentieth International Conference on International Conference on Machine Learning. ICML’03, pp. 912-919. AAAI Press, Washington, DC, USA (2003a) [56] Zhu, X., Lafferty, J., Ghahramani, Z.: Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In: ICML 2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, pp. 58-65 (2003b) |