[1] Anderson, D.G.: Iterative procedures for nonlinear integral equations. J. ACM (JACM) 12(4), 547-560 (1965) [2] Bertrand Q., Massias M.: Anderson acceleration of coordinate descent. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp. 1288-1296 (2021) [3] Bian, W., Chen, X.J., Kelley, C. T.: Andersion acceleration for a class of nonsmooth fixed-point problems. SIAM J. Sci. Comput. 43(5), S1-S20 (2021) [4] Bollapragada, R., Scieur, D., d’Aspremont, A.: Nonlinear acceleration of momentum and primal-dual algorithms. Math. Program. 198, 325 (2022) [5] Both, J.W., Kumar, K., Nordbotten, J.M., Radu, F.A.: Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media. Comput. Math. Appl. 77(6), 1479-1502 (2019) [6] Chen, X.J., Kelley, C.T.: Convergence of the EDIIS algorithm for nonlinear equations. SIAM J. Sci. Comput. 41(1), A365-A379 (2019) [7] Eddy, R.P.: Extrapolating to the limit of a vector sequence. In: Wang, P.C.C., Schoenstadt, A.L., Russak, B.I., Comstock, C. (eds.) Information Linkage Between Applied Mathematics and Industry, pp. 387-396. Academic Press, Elsevier Inc. (1979) [8] Evans, C., Pollock, S., Rebholz, L.G., Xiao, M.Y.: A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point methods (but not in those converging quadratically). SIAM J. Numer. Anal. 58(1), 788-810 (2020) [9] Eyert, V.: A comparative study on methods for convergence acceleration of iterative vector sequences. J. Comput. Phys. 124(2), 271-285 (1996) [10] Fang, H.R, Saad, Y.: Two classes of multisecant methods for nonlinear acceleration. Numer. Linear Algebra Appl. 16(3), 197-221 (2009) [11] Fu, A., Zhang, J., Boyd, S.: Anderson accelerated Douglas-Rachford splitting. SIAM J. Sci. Comput. 42(6), A3560-A3583 (2020) [12] Geist M., Scherrer, B.: Anderson acceleration for reinforcement learning. arXiv:1809.09501 (2018) [13] Geredeli, P.G., Rebholz, L.G., Vargun, D., Zytoon, A.: Improved convergence of the Arrow-Hurwicz iteration for the Navier-Stokes equation via grad-div stabilization and Anderson acceleration. J. Comput. Appl. Math. 442, 114920 (2022) [14] Li, Z., Li, J.: A fast Anderson-Chebyshev acceleration for nonlinear optimization. In: International Conference on Artificial Intelligence and Statistics, PMLR, pp. 1047-1057 (2020) [15] Liu, H. L., Tian, X. P.: AEGD: adaptive gradient descent with energy. arXiv:2010.05109 (2020) [16] Liu, H.L., Tian, X.P.: An adaptive gradient method with energy and momentum. Ann. Appl. Math. 38(2), 183-222 (2022) [17] Liu, H.L., Tian X.P.: Dynamic behavior for a gradient algorithm with energy and momentum. arXiv:2203.12199, 1-20 (2022) [18] Liu, H.L., Tian, X.P: SGEM: stochastic gradient with energy and momentum. arXiv:2208.02208, 1-24 (2022) [19] Lott, P.A., Walker, H.F., Woodward, C.S., Yang, U.M.: An accelerated Picard method for nonlinear systems related to variably saturated flow. Adv. Water Resour. 38, 92-101 (2012) [20] Luo, S., Liu, Q.H.: A fixed-point iteration method for High frequency helmholtz equations. J. Sci. Comput. 93, 74 (2022) [21] Mai, V., Johansson, M.: Anderson acceleration of proximal gradient methods. In: Singh, A.H.D. III (ed.) Proceedings of the 37th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 119, pp. 6620-6629. PMLR, Virtual (2020) [22] Nesterov Y.E.: A method for solving the convex programming problem with convergence rate o(1/k2). Dokl. akad. nauk Sssr. 269, 543-547 (1983) [23] Oosterlee, C.W., Washio, T.: Krylov subspace acceleration of nonlinear multigrid with application to recirculating flows. SIAM J. Sci. Comput. 21(5), 1670-1690 (2000) [24] Pasini, M.L., Yin, J., Reshniak, V., Stoyanov, M.: Stable Anderson acceleration for deep learning. arXiv:2110.14813 (2021) [25] Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1-17 (1964) [26] Poon, C., Liang, J.W.: Trajectory of alternating direction method of multipliers and adaptive acceleration. Adv. Neural. Inf. Process. Syst. (2019). https://doi.org/10.48550/arXiv.1906.10114 [27] Potra, F.A., Engler, H.: A characterization of the behavior of the Anderson acceleration on linear problems. Linear Algebra Appl. 438(3), 1002-1011 (2013) [28] Pulay, P.: Convergence acceleration of iterative sequences the case of SCF iteration. Chem. Phys. Lett. 73(2), 393-398 (1980) [29] Rohwedder, T., Schneider, R.: An analysis for the DIIS acceleration method used in quantum chemistry calculations. J. Math. Chem. 49(9), 1889-1914 (2011) [30] Scieur, D., Bach, F., d’Aspremont A.: Nonlinear acceleration of stochastic algorithms. In: NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 3985-3994. ACM (2017) [31] Scieur, D., d’Aspremont, A.., Bach, F.: Regularized nonlinear acceleration. In: NIPS'16: Proceedings of the 30th International Conference on Neural Information Processing Systems, pp. 712-720. ACM (2016) [32] Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29(2), 199-233 (1987) [33] de Sterck, H., He, Y.H.: On the asymptotic linear convergence speed of Andersion acceleration, Nesterov acceleration, and nonlinear GMRES. SIAM J. Sci. Comput. 43(5), S21-S46 (2021) [34] Su, W., Boyd, S., Candes, E.: A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights. Journal of Machine Learning Research 17(1), 5312-5354 (2016) [35] Toth, A., Ellis, J.A., Evans, T., Hamilton, S., Kelley, C.T., Pawlowski, R., Slattery, S.: Local improvement results for Andersion acceleration with inaccurate function evaluations. SIAM J. Sci. Comput. 39(5), S47-S65 (2017) [36] Toth, A. Kelley, C.T.: Convergence analysis for Anderson acceleration. SIAM J. Numer. Anal. 53(2), 805-819 (2015) [37] Walker, H.F., Ni, P.: Anderson acceleration for fixed-point iterations. SIAM J. Numer. Anal. 49(4), 1715-1735 (2011) [38] Wang, D., He, Y., de Sterck, H.: On the asymptotic linear convergence speed of Anderson acceleration applied to ADMM. J. Sci. Comput. 88(2), 38 (2021) [39] Yang, Y.A.: Anderson acceleration for seismic inversion. Geophysics 86(1), R99-R108 (2021) [40] Zhang, J., O’Donoghue, B., Boyd, S.: Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations. SIAM J. Optim. 30(4), 3170-3197 (2020) |