[1] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM 45(6), 891-923 (1998). https://doi.org/10.1145/293347.293348 [2] Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399-2434 (2006) [3] Bertozzi, A.L., Flenner, A.: Diffuse interface models on graphs for classification of high dimensional data. Multiscale Model. Simul. 10(3), 1090-1118 (2012) [4] Bertozzi, A.L., Hosseini, B., Li, H., Miller, K., Stuart, A.M.: Posterior consistency of semi-supervised regression on graphs. Inverse Problems 37(10), 105011 (2021) [5] Bertozzi, A.L., Luo, X., Stuart, A.M., Zygalakis, K.C.: Uncertainty quantification in graph-based classification of high dimensional data. SIAM/ASA J. Uncertain. Quantif. 6(2), 568-595 (2018) [6] Bertozzi, A.L., Merkurjev, E.: Graph-based optimization approaches for machine learning, uncertainty quantification and networks. In: Processing, Analyzing and Learning of Images, Shapes, and Forms. Part 2, 503-531, Handb. Numer. Anal., 20, Elsevier/North-Holland, Amsterdam (2019) [7] Boyd, Z.M., Bae, E., Tai, X.-C., Bertozzi, A.L.: Simplified energy landscape for modularity using total variation. SIAM J. Appl. Math. 78(5), 2439-2464 (2018) [8] Boyd, Z.M., Porter, M.A., Bertozzi, A.L.: Stochastic block models are a discrete surface tension. J. Nonlinear Sci. 30(5), 2429-2462 (2020) [9] Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vision 28(2), 151-167 (2007) [10] Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60-65. IEEE (2005) [11] Cai, W., Zhang, Y., Zhou, J.: Maximizing expected model change for active learning in regression. In: 2013 IEEE 13th International Conference on Data Mining, pp. 51-60. IEEE (2013) [12] Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266-277 (2001) [13] Chapman, J., Chen, B., Tan, Z., Calder, J., Miller, K., Bertozzi, A.L.: Novel batch active learning approach and its application on the synthetic aperture radar datasets. In: SPIE Defense and Commercial Sensing: Algorithms for Synthetic Aperture Radar Imagery XXX (2023) [14] Ciurte, A., Bresson, X., Cuisenaire, O., Houhou, N., Nedevschi, S., Thiran, J.-P., Cuadra, M.B.: Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut. PLoS ONE 9(7), e100972 (2014) [15] Dasgupta, S.: Two faces of active learning. Theoret. Comput. Sci. 412(19), 1767-1781 (2011). https://doi.org/10.1016/j.tcs.2010.12.054 [16] Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183-1192. PMLR (2017) [17] Garcia-Cardona, C., Merkurjev, E., Bertozzi, A.L., Flenner, A., Percus, A.G.: Multiclass data segmentation using diffuse interface methods on graphs. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1600-1613 (2014) [18] Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005-1028 (2009). https://doi.org/10.1137/070698592 [19] Hu, H., Sunu, J., Bertozzi, A.L.: Multi-class graph Mumford-Shah model for plume detection using the MBO scheme. In: Proceedings of the EMMCVPR Conference in Hong Kong. 8932, 209-222. Tai, X.-C. et al. (Eds), Springer Lecture Notes in Computer Science (2015) [20] Hu, H., Laurent, T., Porter, M.A., Bertozzi, A.L.: A method based on total variation for network modularity optimization using the MBO scheme. SIAM J. Appl. Math. 73(6), 2224-2246 (2013) [21] Iyer, G., Chanussot, J., Bertozzi, A.L.: A graph-based approach for data fusion and segmentation of multimodal images. IEEE Trans. Geosci. Remote Sensing 59(5), 4419-4429 (2021). https://doi.org/10.1109/TGRS.2020.2971395 [22] Ji, M., Han, J.: A variance minimization criterion to active learning on graphs. In: Artificial Intelligence and Statistics, pp. 556-564. PMLR (2012) [23] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comp. Vision 1, 321-331 (2004) [24] Kushnir, D., Venturi, L.: Diffusion-based deep active learning. arXiv:2003.10339 (2020) [25] Ma, Y., Garnett, R., Schneider, J.G.: Sigma-optimality for active learning on Gaussian random fields. In: NIPS, pp. 2751-2759 (2013) [26] Ma, Y., Huang, T.-K., Schneider, J.G.: Active search and bandits on graphs using sigma-optimality. In: UAI, vol. 542, pp. 551 (2015) [27] Meng, Z., Merkurjev, E., Koniges, A., Bertozzi, A.L.: Hyperspectral image classification using graph clustering methods. IPOL J. Image Process. Online 7, 218-245 (2017). https://doi.org/10.5201/ipol.2017.204 [28] Merkurjev, E., Garcia-Cardona, C., Bertozzi, A.L., Flenner, A., Percus, A.G.: Diffuse interface methods for multiclass segmentation of high-dimensional data. Appl. Math. Lett. 33, 29-34 (2014) [29] Merkurjev, E., Kostić, T., Bertozzi, A.L.: An MBO scheme on graphs for classification and image processing. SIAM J. Imaging Sci. 6(4), 1903-1930 (2013) [30] Merkurjev, E., Sunu, J., Bertozzi, A.L.: Graph MBO method for multiclass segmentation of hyperspectral stand-off detection video. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 689-693. IEEE (2014) [31] Miller, K., Bertozzi, A.L.: Model-change active learning in graph-based semi-supervised learning. https://doi.org/10.48550/arXiv.2110.07739 (2021) [32] Miller, K., Li, H., Bertozzi, A.L.: Efficient graph-based active learning with probit likelihood via Gaussian approximations. arXiv:2007.11126 (2020). [33] Miller, K., Mauro, J., Setiadi, J., Baca, X., Shi, Z., Calder, J., Bertozzi, A.L.: Graph-based active learning for semi-supervised classification of SAR data. arXiv:2204.00005 (2022) [34] Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577-685 (1989). https://doi.org/10.1002/cpa.3160420503 [35] O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv:1511.08458 (2015) [36] Qiao, Y., Shi, C., Wang, C., Li, H., Haberland, M., Luo, X., Stuart, A.M., Bertozzi, A.L.: Uncertainty quantification for semi-supervised multi-class classification in image processing and ego-motion analysis of body-worn videos. Electron. Imaging 31(11), 1-264 (2019) [37] Qin, J., Lee, H., Chi, J.T., Drumetz, L., Chanussot, J., Lou, Y., Bertozzi, A.L.: Blind hyperspectral unmixing based on graph total variation regularization. IEEE Trans. Geosci. Remote Sensing 59(4), 3338-3351 (2021). https://doi.org/10.1109/TGRS.2020.3020810 [38] Schwenk, J., Rowland, J.: RiverPIXELS: paired Landsat images and expert-labeled sediment and water pixels for a selection of rivers v1.0. United States. https://data.ess-dive.lbl.gov/view/, https://doi.org/10.15485/1865732 [39] Settles, B.: Active Learning vol. 6, pp. 1-114. Morgan & Claypool Publishers LLC, Carnegie Mellon University, USA (2012). https://doi.org/10.2200/s00429ed1v01y201207aim018 [40] Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Carnegie-Mellon University, Pittsburgh, PA (1994) [41] Thorpe, M., Nguyen, T.M., Xia, H., Strohmer, T., Bertozzi, A., Osher, S., Wang, B.: Grand++: graph neural diffusion with a source term. In: International Conference on Learning Representations (2021) [42] Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395-416 (2007) [43] Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861-6871. PMLR (2019) [44] Zhu, F., Wang, Y., Xiang, S., Fan, B., Pan, C.: Structured sparse method for hyperspectral unmixing. ISPRS-J. Photogramm. Remote Sens. 88, 101-118 (2014) [45] Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 912-919 (2003) |