[1] Adams, L., Li, Z.: The immersed interface/multigrid methods for interface problems. SIAM J. Sci. Comput. 24, 463-479 (2002). https://doi.org/10.1137/S1064827501389849 [2] Bergmann, S., Albe, K., Flegel, E., Barragan-Yani, D.A., Wagner, B.: Anisotropic solid-liquid interface kinetics in silicon: an atomistically informed phase-field model. Modell. Simul. Mater. Sci. Eng. 25(6), 065015 (2017). https://doi.org/10.1088/1361-651X/aa7862 [3] Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007) [4] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002) [5] De Zeeuw, D.: Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. J. Comput. Appl. Math. 33, 1-27 (1990). https://doi.org/10.1016/0377-0427(90)90252-U [6] Dong, B.Y., Feng, X.F., Li, Z.: An FE-FD method for anisotropic elliptic interface problems. SIAM J. Sci. Comput. 42, B1041-B1066 (2020). https://doi.org/10.1137/19M1291030 [7] Dong, B.Y., Feng, X.F., Li, Z.: An L∞ second order Cartesian method for 3D anisotropic elliptic interface problems. J. Comput. Math. 40, 886-913 (2022). https://doi.org/10.4208/jcm.2103-m2020-0107 [8] Evans, L. C.: Partial Differential Equations. AMS (1998) [9] He, X., Lin, T., Lin, Y., Zhang, X.: Immersed finite element methods for parabolic equations with moving interface. Numer. Methods Partial Differential Equations 29(2), 619-646 (2013). https://doi.org/10.1002/num.21722 [10] Hou, T., Li, Z., Osher, S., Zhao, H.: A hybrid method for moving interface problems with application to the Hele-Shaw flow. J. Comput. Phys. 134, 236-252 (1997). https://doi.org/10.1006/jcph.1997.5689 [11] Huang, W., Rokhlin, S.I.: Interface waves along an anisotropic imperfect interface between anisotropic solids. J. Nondestruc. Eval. 11, 185-198 (1992). https://doi.org/10.1007/BF00566409 [12] Langer, J.S.: Instabilities and patten formation in crystal growth. Rev. Modern Phys. 52, 1-28 (1980). https://doi.org/10.1103/RevModPhys.52.1 [13] Levitas, V.I., Warren, J.A.: Phase field approach with anisotropic interface energy and interface stresses: large strain formulation. J. Mech. Phy. Solids. 91, 94-125 (2016). https://doi.org/10.1016/j.jmps.2016.02.029 [14] Li, Z.: Immersed interface method for moving interface problems. Numer. Algorithm 14, 269-293 (1997). https://doi.org/10.1023/A:1019173215885 [15] Li, Z., Ito, K.: Maximum principle preserving schemes for interface problems with discontinuous coefficients. SIAM J. Sci. Comput. 23, 1225-1242 (2001). https://doi.org/10.1137/S1064827500370160 [16] Li, Z., Soni, B.: Fast and accurate numerical approaches for Stefan problems and crystal growth. Numer. Heat Transf. B: Fundam. 35, 461-484 (1999). https://doi.org/10.1080/104077999275848 [17] Lin, T., Lin, Y., Zhang, X.: A method of lines based on immersed finite elements for parabolic moving interface problems. Adv. Appl. Math. Mech. 5(4), 548-568 (2013). https://doi.org/10.1017/S2070073300001387 [18] Lin, T., Lin, Y., Zhang, X.: Immersed finite element method of lines for moving interface problems with nonhomogeneous flux jump. Contemp. Math. 586, 257-265 (2013). https://doi.org/10.1090/conm/586/11633 [19] McFadden, G.B., Wheeler, A.A., Braun, R.J., Coriell, S.R., Sekerka, R.F.: Phase-field models for anisotropic interfaces. Phys. Rev. E 48, 2016-2024 (1993). https://doi.org/10.1103/PhysRevE.48.2016 [20] Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations. Cambridge Press, Cambridge (1995) [21] Sethian, J., Straint, J.: Crystal growth and dendritic solidification. J. Comput. Phys. 98, 231-253 (1992). https://doi.org/10.1016/0021-9991(92)90140-T [22] Schittkowski, K.: QL-quadratic Programming, version 1.5 (1991). https://www.uni-bayreuth.de/departments/math/~kschittkowski/ql.htm [23] Suo, Z.: Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc. A 427, 331-358 (1990) [24] Tuncel, N. G., Serbest, A. H.: Reflection and refraction by an anisotropic metamaterial slab with diagonal anisotropy. In: 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), Tel Aviv, Israel, 2015, pp. 1-4. IEEE (2015) [25] Yang, Q., Zhang, X.: Discontinuous Galerkin immersed finite element methods for parabolic interface problems. J. Comput. Appl. Math. 299, 127-139 (2016). https://doi.org/10.1016/j.cam.2015.11.020 |