[1] Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. arXiv:1803.10091 (2018) [2] Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509-517 (1975) [3] Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611 (1992) [4] Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1-49 (1998) [5] Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J.X., Yi, L., Yu, F.: ShapNet: an information-rich 3D model repository. arXiv:1512.03012 (2015) [6] Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the LambertW function. Adv. Comput. Math. 5(1), 329-359 (1996) [7] Curless, B., Levoy, M.: A volumetric method for building complex models from range images computer graphics. In: SIGGRAPH 1996 Proceedings (1996) [8] Cutler, A., Breiman, L.: Archetypal analysis. Technometrics 36(4), 338-347 (1994) [9] Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. Springer, New York (2003) [10] De Bruijn, N.G.: Asymptotic Methods in Analysis, vol. 4. Courier Corporation, USA (1981) [11] Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Theory of Evolutionary Computation, pp. 1-87. Springer, Cham, Switzerland (2020) [12] Draug, C., Gimpel, H., Kalma, A.: The Octave Image package (version 2.14.0) (2022). https://gnu-octave.github.io/packages/image [13] Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. Ann. Math. Stat. 27(3), 642-669 (1956) [14] Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image sampling. IEEE Trans. Image Process. 6(9), 1305-1315 (1997) [15] Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3D deep shape descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319-2328 (2015) [16] Graham, R., Oberman, A.M.: Approximate convex hulls: sketching the convex hull using curvature. arXiv:1703.01350 (2017) [17] Hadwiger, H.: Vorlesungen Über Inhalt, Oberfläche und Isoperimetrie, vol. 93. Springer, Berlin (1957) [18] Helgason, S., Helgason, S.: The Radon Transform, vol. 2. Springer, New York (1980) [19] Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604-613 (1998) [20] Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 (2015) [21] Jiménez, P., Thomas, F., Torras, C.: 3D collision detection: a survey. Comput. Gr. 25(2), 269-285 (2001) [22] Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535-547 (2019) [23] Jones, P.W., Osipov, A., Rokhlin, V.: A randomized approximate nearest neighbors algorithm. Applied and Computational Harmonic Analysis 34(3), 415-444 (2013) [24] Kazmi, I.K., You, L., Zhang, J.J.: A survey of 2D and 3D shape descriptors. In: 2013 10th International Conference Computer Graphics, Imaging and Visualization, pp. 1-10. IEEE (2013) [25] Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014) [26] Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Cambridge University Press, Cambridge (1997) [27] Klokov, R., Lempitsky, V.: Escape from cells: deep KD-networks for the recognition of 3D point cloud models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 863-872 (2017) [28] Krig, S.: Interest point detector and feature descriptor survey. In: Computer Vision Metrics, pp. 187-246. Springer, Cham (2016) [29] LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/ [30] Li, J.X., Chen, B.M., Lee, H.: SO-Net: self-organizing network for point cloud analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9397-9406 (2018) [31] Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: Advances in Neural Information Processing Systems, pp. 820-830 (2018) [32] Lin, M., Gottschalk, S.: Collision detection between geometric models: a survey. Proc. IMA Conf. Math. Surf. 1, 602-608 (1998) [33] Macdonald, C.B., Merriman, B., Ruuth, S.J.: Simple computation of reaction-diffusion processes on point clouds. Proc. Natl. Acad. Sci. 110(23), 9209-9214 (2013) [34] Macdonald, C.B., Miller, M., Vong, A., et al.: The Octave Symbolic package (version 3.0.1) (2022). https://gnu-octave.github.io/packages/symbolic [35] Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2, 49-55 (1936) [36] Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Prob. 1990, 1269-1283 (1990) [37] Meurer, A., Smith, C.P., Paprocki, M., Čertík, O., Kirpichev, S.B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger, B.E., Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M.J., Terrel, A.R., Roučka, Š., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., Scopatz, A.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, e103 (2017). https://doi.org/10.7717/peerj-cs.103 [38] Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807-814 (2010) [39] Natterer, F.: The Mathematics of Computerized Tomography. Society for Industrial and Applied Mathematics, USA (2001) [40] Osting, B., Wang, D., Xu, Y., Zosso, D.: Consistency of archetypal analysis. SIAM J. Math. Data Sci. 3(1), 1-30 (2021). [41] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017) [42] Peyré, G., Cuturi, M., et al.: Computational optimal transport: with applications to data science. Found. Trends® Mach. Learn. 11(5-6), 355-607 (2019) [43] Pollard, D.: Convergence of Stochastic Processes. Springer, New York (1984) [44] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017) [45] Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099-5108 (2017) [46] Radon, J.: über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten. Class. Pap. Mod. Diagn. Radiol. 5(21), 124 (2005) [47] Rostami, R., Bashiri, F.S., Rostami, B., Yu, Z.: A survey on data-driven 3D shape descriptors. Comput. Graph. Forum 38(1), 356-393 (2019) [48] Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227(3), 1943-1961 (2008) [49] Santaló, L.A.: Integral Geometry and Geometric Probability. Cambridge University Press, New York (2004) [50] Sedaghat, N., Zolfaghari, M., Amiri, E., Brox, T.: Orientation-boosted voxel nets for 3D object recognition. arXiv:1604.03351 (2016) [51] Settles, B.: Active learning literature survey. Technical report, University of Wisconsin-Madison Department of Computer Sciences (2009) [52] Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018) [53] Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3693-3702 (2017) [54] Sinha, A., Bai, J., Ramani, K.: Deep learning 3D shape surfaces using geometry images. In: European Conference on Computer Vision. Springer, Berlin (2016) [55] Solmon, D.C.: The X-ray transform. J. Math. Anal. Appl. 56(1), 61-83 (1976) [56] The mpmath development team: mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 1.2.1). (2021). https://mpmath.org/ [57] Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 385-458 (2014) [58] Tsai, Y.-H.R.: Rapid and accurate computation of the distance function using grids. J. Comput. Phys. 178(1), 175-195 (2002) [59] Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Berlin (2009) [60] Wang, P.-S., Liu, Y., Guo, Y.-X., Sun, C.-Y., Tong, X.: O-CNN: Octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Gr. (TOG) 36(4), 72 (2017) [61] Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Gr. (TOG) 38(5), 146 (2019) [62] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912-1920 (2015) [63] Xia, F., et al.: PointNet.pytorch Git repository. https://github.com/fxia22/pointnet.pytorch [64] Xie, J., Dai, G., Zhu, F., Wong, E.K., Fang, Y.: Deepshape: deep-learned shape descriptor for 3D shape retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1335-1345 (2016) [65] Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4490-4499 (2018) |