1. Brezinski, C., Redivo-Zaglia, M.:Convergence acceleration of Kaczmarz's method. J. Eng. Math. 93, 3-19 (2015) 2. Chen, X., Powell, A.M.:Almost sure convergence of the Kaczmarz algorithm with random measurements. J. Fourier Anal. Appl. 18, 1195-1214 (2012) 3. Cheney, E.W.:Introduction to Approximation Theory. McGraw-Hill, New York (1966) 4. Davis, P.J.:Interpolation and Approximation. Dover, New York (1975) 5. Eldar, Y.C., Needell, D.:Acceleration of randomized Kaczmarz method via the Johnson-Lindenstrauss lemma. Numer. Algorithm 58(2), 163-177 (2011) 6. Genz, A.:Testing multidimensional integration routines. In:Proceedings of International Conference on Tools, Methods and Languages for Scientific and Engineering Computation, pp. 81-94. Elsevier North-Holland, Inc. (1984) 7. Liu, J., Wright, S.J.:An accelerated randomized Kaczmarz algorithm. Math. Comput. 85(297), 153- 178 (2016) 8. Liu, J.S.:Monte Carlo Strategies in Scientific Computing. Springer, New York (2008) 9. Needell, D.:Randomized Kaczmarz solver for noisy linear systems. BIT Numer. Math. 50(2), 395-403 (2010) 10. Powell, M.J.D.:Approximation Theory and Methods. Cambridge University Press, Cambridge (1981) 11. Rivlin, T.J.:An Introduction to the Approximation of Functions. Dover Publication Inc, New York (1969) 12. Shin, Y., Wu, K., Xiu, D.:Sequential function approximation with noisy data. J. Comput. Phys. 371, 363-381 (2018) 13. Shin, Y., Xiu, D.:A randomized algorithm for multivariate function approximation. SIAM J. Sci. Comput. 39(3), A983-A1002 (2017) 14. Strohmer, T., Vershynin, R.:A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(2), 262-278 (2009) 15. Wallace, T., Sekmen, A.:Acceleration of Kaczmarz using orthogonal subspace projections. In:Biomedical Sciences and Engineering Conference (BSEC), Oak Ridge, Tennessee, USA, May 21-23, 2013. pp. 1-4. IEEE (2013) 16. Wu, K., Shin, Y., Xiu, D.:A randomized tensor quadrature method for high dimensional polynomial approximation. SIAM J. Sci. Comput. 39, A1811-A1833 (2017) 17. Wu, K., Xiu, D.:Sequential function approximation on arbitrarily distributed point sets. J. Comput. Phys. 354, 370-386 (2018) 18. Wu, K., Xiu, D.:Numerical aspects for approximating governing equations using data. J. Comput. Phys. 384, 200-221 (2019) 19. Zouzias, A., Freris, N.M.:Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 34(2), 773-793 (2013) |