[1] Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML. In: Seventh International Conference on Learning Representations (2019) [2] Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res. 18, 1-43 (2018) [3] Benner, P., Ohlberger, M., Cohen, A., Willcox, K.: Model Reduction and Approximation. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017) [4] Bhattacharya, K., Hosseini, B., Kovachki, N.B., Stuart, A.M.: Model reduction and neural networks for parametric PDEs. arXiv:2005.03180 (2020) [5] Cai, S., Wang, Z., Wang, S., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks for heat transfer problems. J. Heat Transfer 143(6), 060801 (2021) [6] Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021). https://doi.org/10.1109/cvpr46437.2021.00574 [7] Chen, Y., Dong, B., Xu, J.: Meta-MgNet: meta multigrid networks for solving parameterized partial differential equations. J. Comput. Phys. 455, 110996 (2022) [8] Cohen, A., DeVore, R.: Approximation of high-dimensional parametric PDEs. Acta Numerica 24, 1-159 (2015) [9] Cohen, A., DeVore, R., Petrova, G., Wojtaszczyk, P.: Optimal stable nonlinear approximation. Foundat. Comput. Math. 22, 607-648 (2022) [10] Cohen, A., DeVore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. 9(1), 11-47 (2011). https://doi.org/10.1142/S0219530511001728 [11] DeVore, R.A., Howard, R., Micchelli, C.A.: Optimal nonlinear approximation. Manuscripta Mathematica 63, 469-478 (1989) [12] Dupont, E., Kim, H., Eslami, S.M.A., Rezende, D.J., Rosenbaum, D.: From data to functa: your data point is a function and you can treat it like one. In: Proceedings of the 39th International Conference on Machine Learning (2022) [13] E, W., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6(1), 1-12 (2018) [14] Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning. PMLR, pp. 1126-1135 (2017) [15] Franco, N.R., Manzoni, A., Zunino, P.: A deep learning approach to reduced order modelling of parameter dependent partial differential equations. Math. Comput. 92(340), 483-524 (2023) [16] Fresca, S., Dede’, L., Manzoni, A.: A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs. J. Sci. Comput. 87(2), 61 (2021). https://doi.org/10.1007/s10915-021-01462-7 [17] Fresca, S., Gobat, G., Fedeli, P., Frangi, A., Manzoni, A.: Deep learning-based reduced order models for the real-time simulation of the nonlinear dynamics of microstructures. Int. J. Numer. Methods Eng. 123(20), 4749-4777 (2022). https://doi.org/10.1002/nme.7054 [18] Gedney, S.D.: Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Syn. Lectures Comput. Electromag. 6(1), 1-250 (2011) [19] Greif, C., Urban, K.: Decay of the Kolmogorov N-width for wave problems. Appl. Math. Lett. 96, 216-222 (2019). https://doi.org/10.1016/j.aml.2019.05.013 [20] Huang, X., Liu, H., Shi, B., Wang, Z., Yang, K., Li, Y., Weng, B., Wang, M., Chu, H., Zhou, J., Fan, Y., Hua, B., Chen, L., Dong, B.: Solving partial differential equations with point source based on physics-informed neural networks. arXiv:2111.01394 (2021) [21] Huang, X., Ye, Z., Liu, H., Shi, B., Wang, Z., Yang, K., Li, Y., Weng, B., Wang, M., Chu, H., Zhou, J., Fan, Y., Hua, B., Chen, L., Dong, B.: Meta-auto-decoder for solving parametric partial differential equations. Adv. Neural Infor. Process. Syst. 35, 23426-23438 (2022) [22] Jiang, C.M., Esmaeilzadeh, S., Azizzadenesheli, K., Kashinath, K., Mustafa, M., Tchelepi, H.A., Marcus, P., Prabhat, M., Anandkumar, A.: MeshfreeFlownet: a physics-constrained deep continuous space-time super-resolution framework. In: International Conference for High Performance Computing, Networking, Storage, and Analysis (2020) [23] Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with artificial neural networks. Eur. J. Appl. Math. 32(3), 421-435 (2021) [24] Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014) [25] Kochkov, D., Smith, J., Alieva, A., Wang, Q., Brenner, M., Hoyer, S.: Machine learning accelerated computational fluid dynamics. Proceedings of the National Academy of Sciences of the United States of America. 118(21), 1 (2021) [26] Lee, K., Carlberg, K.T.: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J. Comput. Phys. 404, 108973 (2020). https://doi.org/10.1016/j.jcp.2019.108973 [27] Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., Anandkumar, A.: Fourier neural operator for parametric partial differential equations. arXiv:2010.08895 (2020) [28] Liszka, T., Orkisz, J.: The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 11(1/2), 83-95 (1980) [29] Liu, X., Zhang, X., Peng, W., Zhou, W., Yao, W.: A novel meta-learning initialization method for physics-informed neural networks. arXiv:2107.10991 (2021) [30] Liu, Y., Li, J., Sun, S., Yu, B.: Advances in Gaussian random field generation: a review. Comput. Geosci. 23(5), 1011-1047 (2019) [31] Long, Z., Lu, Y., Dong, B.: PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019) [32] Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-Net: learning PDEs from data. In: International Conference on Machine Learning, PMLR, pp. 3208-3216 (2018) [33] Lu, Y., Chen, H., Lu, J., Ying, L., Blanchet, J.: Machine learning for elliptic PDEs: fast rate generalization bound, neural scaling law and minimax optimality. In: International Conference on Learning Representations (2022) [34] Lu, L., Jin, P., Karniadakis, G.E.: DeepONet: learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv:1910.03193 (2019) [35] Lu, L., Meng, X., Cai, S., Mao, Z., Goswami, S., Zhang, Z., Karniadakis, G.E.: A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data. Comput. Methods Appl. Mech. Eng. 393, 114778 (2022) [36] Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., Johnson, S.G.: Physics-informed neural networks with hard constraints for inverse design. SIAM J. Sci. Comput. 43, B1105-B1132 (2021) [37] Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker, M.: Modulated periodic activations for generalizable local functional representations. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021). https://doi.org/10.1109/iccv48922.2021.01395 [38] Nichol, A., Schulman, J.: Reptile: a scalable metalearning algorithm. arXiv:1803.02999 (2018) [39] Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165-174 (2019) [40] Psaros, A.F., Kawaguchi, K., Karniadakis, G.E.: Meta-learning PINN loss functions. J. Comput. Phys. 458, 111121 (2022). https://doi.org/10.1016/j.jcp.2022.111121 [41] Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: an Introduction. Springer, Switzerland (2015) [42] Raissi, M.: Deep hidden physics models: deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 19(1), 932-955 (2018) [43] Schneider, J.B.: Understanding the Finite-Difference Time-Domain Method. School of Electrical Engineering and Computer Science. Washington State University 28 (2010) [44] Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339-1364 (2018) [45] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural Informat. Process. Syst. 33, 7462-7473 (2020) [46] Stanziola, A., Arridge, S.R., Cox, B.T., Treeby, B.E.: A Helmholtz equation solver using unsupervised learning: application to transcranial ultrasound. J. Comput. Phys. 441, 110430 (2021). https://doi.org/10.1016/j.jcp.2021.110430 [47] Tran, H., Webster, C.G., Zhang, G.: Analysis of quasi-optimal polynomial approximations for parameterized PDEs with deterministic and stochastic coefficients. Numerische Mathematik 137(2), 451-493 (2017). https://doi.org/10.1007/s00211-017-0878-6 [48] Treeby, B.E., Cox, B.T.: k-Wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Optics 15(2), 021314 (2010) [49] Wang, C., Li, S., He, D., Wang, L.: Is \begin{document}$ L^2 $\end{document} physics informed loss always suitable for training physics informed neural network? In: Advances in Neural Information Processing Systems (2022) [50] Wang, S., Wang, H., Perdikaris, P.: Learning the solution operator of parametric partial differential equations with physics-informed deeponets. arXiv:2103.10974 (2021) [51] Yoon, J., Kim, T., Dia, O., Kim, S., Bengio, Y., Ahn, S.: Bayesian model-agnostic meta-learning. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 7343-7353 (2018) [52] Zang, Y., Bao, G., Ye, X., Zhou, H.: Weak adversarial networks for high-dimensional partial differential equations. J. Comput. Phys. 411, 109409 (2020) [53] Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P., Zhu, J.: The Finite Element Method, vol. 3. McGraw-hill, London (1977) |