[1] Acosta, S.: Recovery of pressure and wave speed for photoacoustic imaging under a condition of relative uncertainty. Inverse Problems 35(11), 115013 (2019) [2] Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Problems 23(5), 2089 (2007) [3] Arridge, S.R., Betcke, M.M., Cox, B.T., Lucka, F., Treeby, B.E.: On the adjoint operator in photoacoustic tomography. Inverse Problems 32(11), 115012 (2016) [4] Bao, G., Lin, J., Triki, F.: A multi-frequency inverse source problem. J. Differential Equations 249(12), 3443-3465 (2010) [5] Belhachmi, Z., Glatz, T., Scherzer, O.: A direct method for photoacoustic tomography with inhomogeneous sound speed. Inverse Problems 32(4), 045005 (2016) [6] Chung, E., Lam, C.Y., Qian, J.: A Neumann series based method for photoacoustic tomography on irregular domains. Contemporary Mathematics 615, 89-104 (2014) [7] Colton, D.L., Kress, R., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93. Springer, New York (1998) [8] Finch, D., Hickmann, K.S.: Transmission eigenvalues and thermoacoustic tomography. Inverse Problems 29(10), 104016 (2013) [9] Glowinski, R., Leung, S., Qian, J.: A penalization-regularization-operator splitting method for Eikonal-based traveltime tomography. SIAM J. Imaging Sci. 8, 1263-1292 (2015) [10] Herglotz, G.: Über die analytische Fortsetzung des Potentials ins Innere der anziehenden Massen, volume 44. Teubner (1914) [11] Hristova, Y., Kuchment, P., Nguyen, L.: Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Problems 24(5), 055006 (2008) [12] Huang, C., Wang, K., Schoonover, R.W., Wang, L.V., Anastasio, M.A.: Joint reconstruction of absorbed optical energy density and sound speed distributions in photoacoustic computed tomography: a numerical investigation. IEEE Transact. Comput. imaging 2(2), 136-149 (2016) [13] Huang, G., Qian, J.: Analysis of Kantonovich-Rubinstein norm and its application to inverse gravity problem. SIAM J. Imaging Sci. 12(3), 1528-1560 (2019) [14] Huang, G., Zhang, X., Qian, J.: Kantorovich-Rubinstein misfit for inverting gravity-gradient data by the level-set method. Geophysics 84(5), G55-G73 (2019) [15] Isakov, V.: Inverse Source Problems. American Mathematical Society, Providence, Rhode Island (1990) [16] Isakov, V.: Inverse Problems for Partial Differential Equations, vol. 127. Springer, New York (2006) [17] Isakov, V., Leung, S., Qian, J.: A fast local level set method for inverse gravimetry. Comm. Comput. Phys. 10, 1044-1070 (2011) [18] Isakov, V., Leung, S., Qian, J.: A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Prob. Imaging 7, 523-544 (2013) [19] Ishii, M., Shearer, P.M., Houston, H., Vidale, J.E.: Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature 435(7044), 933-936 (2005) [20] Johnson, R.L., Scott, M.P., Jeffrey, R.G., Chen, Z., Bennett, L., Vandenborn, C., Tcherkashnev, S.: Evaluating hydraulic fracture effectiveness in a coal seam gas reservoir from surface tiltmeter and microseismic monitoring. In: SPE Annual Technical Conference and Exhibition. OnePetro (2010) [21] Knox, C., Moradifam, A.: Determining both the source of a wave and its speed in a medium from boundary measurements. Inverse Problems 36(2), 025002 (2020) [22] Leung, S., Qian, J.: An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals. Comm. Math. Sci. 4, 249-266 (2006) [23] Leung, S., Qian, J., Hu, J.: A level-set adjoint-state method for transmission traveltime tomography in irregular domains. SIAM J. Sci. Comput. 43, A2352-A2380 (2021) [24] Li, W., Leung, S., Qian, J.: A level set-adjoint state method for crosswell transmission-reflection traveltime tomography. Geophys. J. Internat. 199, 348-367 (2014) [25] Li, W., Lu, W., Qian, J.: A level set method for imaging salt structures using gravity data. Geophysics 81(2), G35-G51 (2016) [26] Li, W., Lu, W., Qian, J., Li, Y.: A multiple level set method for three-dimensional inversion of magnetic data. Geophysics 82(5), J61-J81 (2017) [27] Li, W., Qian, J.: Joint inversion of gravity and traveltime data using a level-set based structural parameterization. Geophysics 81(6), G107-G119 (2016) [28] Li, W., Qian, J.: Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Prob. Imaging 15, 387-413 (2021) [29] Li, W., Qian, J.: Kantorovich-Rubinstein metric based level-set methods for inverting modulus of gravity-force data. Inverse Prob. Imaging 16, 1643-1667 (2022) [30] Liu, H., Uhlmann, G.: Determining both sound speed and internal source in thermo- and photo-acoustic tomography. Inverse Problems 31(10), 105005 (2015) [31] Lu, W., Leung, S., Qian, J.: An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Prob. Imaging 9, 479-509 (2015) [32] Lu, W., Qian, J.: A local level set method for three-dimensional inversion of gravity gradiometry data. Geophysics 80, G35-G51 (2015) [33] Matthews, T.P., Poudel, J., Li, L., Wang, L.V., Anastasio, M.A.: Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography. SIAM J Imaging Sci. 11(2), 1560-1588 (2018) [34] Osher, S.J., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003) [35] Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12-49 (1988) [36] Osher, S.J., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28, 907-922 (1991) [37] Qian, J., Stefanov, P., Uhlmann, G., Zhao, H.: An efficient Neumann series-based algorithm for thermoacoustic and photoacoustic tomography with variable sound speed. SIAM J. Imag. Sci. 4(3), 850-883 (2011) [38] Qin, S., Yang, Y., Wang, R.: Source independent velocity recovery using imaginary FWI. In: 82nd EAGE Annual Conference & Exhibition, vol. 2021, pp. 1-5. European Association of Geoscientists & Engineers (2021) [39] Shan, H., Wiedeman, C., Wang, G., Yang, Y.: Simultaneous reconstruction of the initial pressure and sound speed in photoacoustic tomography using a deep-learning approach. In: Novel Optical Systems, Methods, and Applications XXII, vol. 11105, pp. 1110504. International Society for Optics and Photonics (2019) [40] Sharan, S., Wang, R., Herrmann, F.J.: Fast sparsity-promoting microseismic source estimation. Geophys. J. Int. 216(1), 164-181 (2019) [41] Stefanov, P., Uhlmann, G.: Thermoacoustic tomography with variable sound speed. Inverse Problems 25(7), 075011 (2009) [42] Stefanov, P., Uhlmann, G.: Instability of the linearized problem in multiwave tomography of recovery both the source and the speed. arXiv:1211.6217 (2012) [43] Sun, J., Xue, Z., Zhu, T., Fomel, S., Nakata, N.: Full-waveform inversion of passive seismic data for sources and velocities. In: SEG Technical Program Expanded Abstracts 2016, pp. 1405-1410. Society of Exploration Geophysicists (2016) [44] Sussman, M., Smereka, P., Osher, S.J.: A level set approach for computing solutions to incompressible two-phase flows. J. Comput. Phys. 114, 146-159 (1994) [45] Tick, J., Pulkkinen, A., Tarvainen, T.: Modelling of errors due to speed of sound variations in photoacoustic tomography using a Bayesian framework. Biomed. Phys. Eng. Express 6(1), 015003 (2019) [46] Treeby, B.E., Cox, B.T.: k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Optics 15(2), 021314 (2010) [47] Van den Doel, K., Ascher, U.M., Leitao, A.: Multiple level sets for piecewise constant surface reconstruction in highly ill-posed problems. J. Sci. Comput. 43(1), 44-66 (2010) [48] Wang, H., Alkhalifah, T.: Microseismic imaging using a source function independent full waveform inversion method. Geophys. J. Int. 214(1), 46-57 (2018) [49] Wang, K., Anastasio, M.A.: Photoacoustic and thermoacoustic tomography: image formation principles. In: Handbook of Mathematical Methods in Imaging. Springer, New York (2015) [50] Wang, L.V., Wu, H.-I.: Biomedical Optics: Principles and Imaging. Wiley-Interscience, New Jersey (2007) [51] Xia, J., Yao, J., Wang, L.V.: Photoacoustic tomography: principles and advances. Electromagnetic Waves (Cambridge Mass.) 147, 1-22 (2014) [52] Xu, M., Wang, L.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4), 041101 (2006) [53] Ye, M., Cao, M., Feng, T., Yuan, J., Cheng, Q., Liu, X., Xu, G., Wang, X.: Automatic speed of sound correction with photoacoustic image reconstruction. Photons Plus Ultrasound 9708, 601-606 (2016) [54] Yoon, C., Kang, J., Han, S., Yoo, Y., Song, T.-K., Chang, J.H: Enhancement of photoacoustic image quality by sound speed correction: ex vivo evaluation. Optics Express 20(3), 3082-3090 (2012) [55] Zhang, J., Wang, K., Yang, Y., Anastasio., M.A.: Simultaneous reconstruction of speed-of-sound and optical absorption properties in photoacoustic tomography via a time-domain iterative algorithm. In: Photons Plus Ultrasound: Imaging and Sensing 2008: the Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 6856, pp. 68561F. International Society for Optics and Photonics (2008) |