1. Behera, R., Sahoo, J.K., Mohapatra, R.N., Nashed, M.Z.:Computation of generalized inverses of tensors via t-product. Numeri. Linear Algebra Appl. e2416(2021) 2. Braman, K.:Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl. 433, 1241-1253 (2010) 3. Carroll, J., Chang, J.:Analysis of individual differences in multidimensional scaling via an n-way generalization of "Eckart-Young" decomposition. Psychometrika 35, 283-319 (1970) 4. Chang, S.:Sherman-Morrison-Woodbury identity for tensors. arXiv:2007.01816 (2020) 5. Jin, H., Bai, M., Benítez, J., Liu, X.:The generalized inverses of tensors and an application to linear models. Comput. Math. Appl. 74, 385-397 (2017) 6. Kilmer, M., Braman, K., Hao, N., Hoover, R.:Third-order tensors as operators on matrices:a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34, 148-172 (2013) 7. Kilmer, M., Martin, C.:Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641-658 (2011) 8. Liu, Y., Chen, L., Zhu, C.:Improved robust tensor principal component analysis via low-rank core matrix. IEEE J. Sel. Top. Signal Process. 12, 1378-1389 (2018) 9. Liu, Y., Ma, H.:Perturbation of the weighted T-core-EP inverse of tensors based on the T-product. Commun. Math. Res. 37(4), 496-536 (2021). https://doi.org/10.4208/cmr.2021-0052 10. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.:Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42, 925-938 (2020) 11. Ma, H., Li, N., Stanimirović, P., Katsikis, V.N.:Perturbation theory for Moore-Penrose inverse of tensor via Einstein product. Comput. Appl. Math. 38, 1-24 (2019) 12. Martin, C., Shafer, R., Larue, B.:An order-p tensor factorization with applications in imaging. SIAM J. Sci. Comput. 35, A474-A490 (2013) 13. Miao, Y., Qi, L., Wei, Y.:T-Jordan canonical form and T-Drazin inverse based on the T-product. Commun. Appl. Math. Comput. 3, 201-220 (2021) 14. Reichel, L., Ugwu, U.O.:The tensor Golub-Kahan-Tikhonov method applied to the solution of ill-posed problems with a t-product structure. Numer. Linear Algebra Appl. e2412 (2021) 15. Sun, J.-G.:Matrix Perturbation Theory (in Chinese). 2nd edition. Science Press, Beijing (2001) 16. Sun, W., Huang, L., So, H.C., Wang, J.:Orthogonal tubal rank-1 tensor pursuit for tensor completion. Signal Process. 157, 213-224 (2019) 17. Tarzanagh, D.A., Michailidis, G.:Fast randomized algorithms for t-product based tensor operations and decompositions with applications to imaging data. SIAM J. Imaging Sci. 11, 2629-2664 (2018) 18. Tucker, L.:Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279-311 (1966) 19. Wang, G., Wei, Y., Qiao, S.:Generalized Inverses:Theory and Computations. 2nd edition, Science Press, Beijing (2018) |