1. Acosta, G., Bersetche, F.M., Borthagaray, J.P.:A short FE implementation for a 2D homogeneous Dirichlet problem of a fractional Laplacian. Computers & Mathematics with Applications 74(4), 784-816 (2017). https://www.sciencedirect.com/science/article/pii/S0898122117303310 2. Bebendorf, M.:Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM J. Numer. Anal. 45(4), 1472-1494 (2007) 3. Bebendorf, M., Hackbusch, W.:Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L∞-coefficients. Numer. Math. 95(1), 1-28 (2003) 4. Bolin, D., Kirchner, K., Kovács, M.:Numerical solution of fractional elliptic stochastic PDEs with spatial white noise. IMA J. Numer. Anal. 40(2), 1051-1073 (2018). https://doi.org/10.1093/imanum/dry091 5. Börm, S.:Efficient numerical methods for non-local operators:H2-matrix compression, algorithms and analysis, vol. 14. European Mathematical Society (2010) 6. Boukaram, W., Lucchesi, M., Turkiyyah, G., Le Maître, O., Knio, O., Keyes, D.:Hierarchical matrix approximations for space-fractional diffusion equations. Computer Methods in Applied Mechanics and Engineering 369, 113191 (2020). https://www.sciencedirect.com/science/article/pii/S0045782520303765 7. Boukaram, W., Turkiyyah, G., Keyes, D.:Hierarchical matrix operations on GPUs:matrix-vector multiplication and compression. ACM Trans. Math. Softw. 45(1), 3:1-3:28 (2019). https://doi.org/10.1145/3232850 8. Boukaram, W., Turkiyyah, G., Keyes, D.:Randomized GPU algorithms for the construction of hierarchical matrices from matrix-vector operations. SIAM J. Sci. Comput. 41(4), C339-C366 (2019). https://doi.org/10.1137/18M1210101 9. Boukaram, W., Zampini, S., Turkiyyah, G., Keyes, D.:H2OPUS-TLR:high performance tile low rank symmetric factorizations using adaptive randomized approximation (2021). http://arxiv.org/abs/2108.11932 10. D'Elia, M., De Los Reyes, J.C., Miniguano-Trujillo, A.:Bilevel parameter learning for nonlocal image denoising models. J. Math. Imaging Vis. 63(6), 753-775 (2021). https://doi.org/10.1007/s10851-021-01026-2 11. D'Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X., Zhou, Z.:Numerical methods for nonlocal and fractional models. Acta Numer. 29, 1-124 (2020). https://doi.org/10.1017/S096249292000001X 12. D'Elia, M., Tian, X., Yu, Y.:A physically consistent, flexible, and efficient strategy to convert local boundary conditions into nonlocal volume constraints. SIAM J. Sci. Comput. 42(4), A1935-A1949 (2020). https://doi.org/10.1137/19M1266617 13. Du, N., Wang, H.:A fast finite element method for space-fractional dispersion equations on bounded domains in R2. SIAM J. Sci. Comput. 37(3), A1614-A1635 (2015). https://doi.org/10.1137/15M1007458 14. Du, Q.:Nonlocal Modeling, Analysis, and Computation. SIAM (2019) 15. Du, Q., Gunzburger, M., Lehoucq, R., Zhou, K.:A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23, 493-540 (2013) 16. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.:Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54(4), 667-696 (2012). https://doi.org/10.1137/110833294 17. Duo, S., van Wyk, H.W., Zhang, Y.:A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233-252 (2018). https://www.sciencedirect.com/science/article/pii/S0021999117308495 18. Duo, S., Zhang, Y.:Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications. Comput. Methods Appl. Mech. Eng. 355, 639-662 (2019). https://www.sciencedirect.com/science/article/pii/S0045782519303597 19. Gilboa, G., Osher, S.:Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005-1028 (2009). https://doi.org/10.1137/070698592 20. Gillman, A., Young, P.M., Martinsson, P.G.:A direct solver with O(N) complexity for integral equations on one-dimensional domains. Front. Math. China 7(2), 217-247 (2012). https://doi.org/10.1007/s11464-012-0188-3 21. Hackbusch, W.:Hierarchical Matrices:Algorithms and Analysis. Springer-Verlag, Berlin, Heidelberg (2015) 22. Hackbusch, W., Börm, S.:H2-matrix approximation of integral operators by interpolation. Applied Numerical Mathematics 43(1), 129-143 (2002). https://www.sciencedirect.com/science/article/pii/S0168927402001216 23. Halko, N., Martinsson, P.G., Tropp, J.A.:Finding structure with randomness:probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217-288 (2011). https://doi.org/10.1137/090771806 24. Jia, J., Zheng, X., Fu, H., Dai, P., Wang, H.:A fast method for variable-order space-fractional diffusion equations. Numer. Algorithms 85(4), 1519-1540 (2020). https://doi.org/10.1007/s11075-020-00875-z 25. Karkulik, M., Melenk, J.M.:H-matrix approximability of inverses of discretizations of the fractional Laplacian. Adv. Comput. Math. 46 (2019) 26. Keyes, D.E., Ltaief, H., Turkiyyah, G.:Hierarchical algorithms on hierarchical architectures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378(2166), 20190055 (2020). https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0055 27. Kwaśnicki, M.:Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20(1), 7-51 (2017) 28. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., Karniadakis, G.E.:What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020). https://www.sciencedirect.com/science/article/pii/S0021999119307156 29. Lucchesi, M., Allouch, S., Le Maître, O.P., Mustapha, K.A., Knio, O.M.:Particle simulation of space-fractional diffusion equations. Comput. Part. Mech. 7(3), 491-507 (2020). https://doi.org/10.1007/s40571-019-00275-8 30. Massei, S., Mazza, M., Robol, L.:Fast solvers for two-dimensional fractional diffusion equations using rank structured matrices. SIAM J. Sci. Comput. 41(4), A2627-A2656 (2019). https://doi.org/10.1137/18M1180803 31. Minden, V., Ying, L.:A simple solver for the fractional Laplacian in multiple dimensions. SIAM J. Sci. Comput. 42(2), A878-A900 (2020). https://doi.org/10.1137/18M1170406 32. Mustapha, K.A., Furati, K.M., Knio, O.M., Le Maître, O.P.:A finite difference method for space fractional differential equations with variable diffusivity coefficient. Commun. Appl. Math. Comput. 2(4), 671-688 (2020). https://doi.org/10.1007/s42967-020-00066-6 33. Pang, G., Lu, L., Karniadakis, G.E.:fPINNs:fractional physics-informed neural networks. SIAM J. Sci. Comput. 41(2), A2603-A2626 (2019). https://doi.org/10.1137/18M1229845 34. Pozrikidis, C.:The Fractional Laplacian. CRC Press (2016) 35. Samko, S.:Fractional integration and differentiation of variable order:an overview. Nonlinear Dyn. 71, 653-662 (2013). https://doi.org/10.1007/s11071-012-0485-0 36. Xia, J., Chandrasekaran, S., Gu, M., Li, X.S.:Fast algorithms for hierarchically semiseparable matrices. Numer. Linear Algebra Appl. 17(6), 953-976 (2010). https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.691 37. Xu, K., Darve, E.:Efficient numerical method for models driven by Lévy process via hierarchical matrices (2018). http://arxiv.org/abs/1812.08324 38. Xu, K., Darve, E.:Isogeometric collocation method for the fractional Laplacian in the 2D bounded domain. Comput. Methods Appl. Mech. Eng. 364, 112936 (2020). https://www.sciencedirect.com/science/article/pii/S0045782520301195 39. Zampini, S., Boukaram, W., Turkiyyah, G., Knio, O., Keyes, D.E.:H2Opus:a distributed-memory multi-GPU software package for non-local operators (2021). http://arxiv.org/abs/2109.05451 40. Zhao, X., Hu, X., Cai, W., Karniadakis, G.E.:Adaptive finite element method for fractional differential equations using hierarchical matrices. Comput. Methods Appl. Mech. Eng. 325, 56-76 (2017) |