1. Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016) 2. Abbott, B.P., et al.: Tests of general relativity with GW150914. Phys. Rev. Lett. 116(22), 221101 (2016) 3. Abbott, B.P., et al.: GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X9(3), 031040 (2019) 4. Akiyama, K., et al.: First m87 event horizon telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875(1), L4 (2019) 5. Angelopoulos, Y., Aretakis, S., Gajic, D.: Horizon hair of extremal black holes and measurements at null infinity. Phys. Rev. Lett. 121(13), 131102 (2018) 6. Aretakis, S.: A note on instabilities of extremal black holes under scalar perturbations from afar. Class. Quantum Grav. 30(9), 095010 (2013) 7. Burko, L.M., Khanna, G., Zenginoğlu, A.: Cauchy-horizon singularity inside perturbed Kerr black holes. Phys. Rev. D 93(4), 041501 (2016). [Erratum: Phys. Rev. D 96, 129903 (2017)] 8. Burko, L.M., Khanna, G., Sabharwal, S.: (Transient) Scalar hair for (nearly) extreme black holes. Phys. Rev. Res. 1, 033106 (2019) 9. Burko, L.M., Khanna, G., Sabharwal, S.: Scalar and gravitational hair for extreme Kerr black holes. arXiv: 2005. 07294 (2020) 10. Dong, B., Gottlieb, S., Hristova, Y., Jiang, Y,. Wang, H.: The effect of the sensitivity parameter in weighted essentially non-oscillatory methods. In: Brenner, S. (ed.) Topics in Numerical Partial Differential Equations and Scientific Computing. The IMA Volumes in Mathematics and Its Applications, vol. 160, pp. 23–50. Springer, New York, NY (2016) 11. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific, Singapore (2011) 12. Harms, E., Bernuzzi, S., Brügmann, B.: Numerical solution of the 2+1 Teukolsky equation on a hyperboloidal and horizon penetrating foliation of Kerr and application to late-time decays. Class. Quantum Grav. 30(11), 115013 (2013) 13. Harms, E., Bernuzzi, S., Nagar, A., Zenginoğlu, A.: A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime. Class. Quantum. Grav. 31(24), 245004 (2014) 14. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996) 15. Khanna, G..: High-precision numerical simulations on a CUDA GPU: Kerr black hole tails. J. Sci. Comput. 56(2), 366–380 (2013) 16. Kreiss, H.O., Oliger, J.: Methods for the approximate solution of time dependent problems. Global Atm. Res. Prog. Publ. 10, GARP (1973) 17. Poisson, E.: Absorption of mass and angular momentum by a black hole: time-domain formalisms for gravitational perturbations, and the small-hole or slow-motion approximation. Phys. Rev. D 70(8), 084044 (2004) 18. Regge, T., Wheeler, J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957) 19. Sundararajan, P.A., Khanna, G., Hughes, S.A.: Towards adiabatic waveforms for inspiral into Kerr black holes: a new model of the source for the time domain perturbation equation. Phys. Rev. D 76(10), 104005 (2007) 20. Sundararajan, P.A., Khanna, G., Hughes, S.A., Drasco, S.: Towards adiabatic waveforms for inspiral into Kerr black holes. II. Dynamical sources and generic orbits. Phys. Rev. D 78(2), 024022 (2008) 21. Sundararajan, P.A., Khanna, G., Hughes, S.A.: Binary black hole merger gravitational waves and recoil in the large mass ratio limit. Phys. Rev. D 81(10), 104009 (2010) 22. Teukolsky, S.A.: Perturbations of a rotating black hole. I. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J. 185, 635–647 (1973) 23. Wysocki, D., Lange, J., O’Shaughnessy, R.: Reconstructing phenomenological distributions of compact binaries via gravitational wave observations. Phys. Rev. D 100(4), 043012 (2019) 24. Zenginoğlu, A.: Hyperboloidal evolution with the Einstein equations. Class. Quantum Grav. 25, 195025 (2008) 25. Zenginoğlu, A.: A hyperboloidal study of tail decay rates for scalar and Yang-Mills fields. Class. Quantum Grav. 25, 175013 (2008) 26. Zenginoğlu, A.: Hyperboloidal foliations and scri-fixing. Class. Quantum Grav. 25, 145002 (2008) 27. Zenginoğlu, A.: Asymptotics of black hole perturbations. Class. Quantum Grav. 27, 045015 (2010) 28. Zenginoğlu, A.: A geometric framework for black hole perturbations. Phys. Rev. D 83, 127502 (2011) 29. Zenginoğlu, A.: Hyperboloidal layers for hyperbolic equations on unbounded domains. J. Comput. Phys. 230, 2286–2302 (2011) 30. Zenginoğlu, A., Khanna, G.: Null infinity waveforms from extreme-mass-ratio inspirals in Kerr spacetime. Phys. Rev. X 1(2), 021017 (2011) 31. Zenginoğlu, A., Khanna, G., Burko, L.M.: Intermediate behavior of Kerr tails. Gen. Relativ. Gravit. 46, 1672 (2014) 32. Zenginoğlu, A., Nunez, D., Husa, S.: Gravitational perturbations of Schwarzschild spacetime at null infinity and the hyperboloidal initial value problem. Class. Quantum Grav. 26, 035009 (2009) 33. Zenginoğlu, A., Tiglio, M.: Spacelike matching to null infinity. Phys. Rev. D 80, 024044 (2009) |