1. Ben-Artzi, M., Falcovitz, J.: Generalized Riemann problems in computational fluid dynamics. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 11. Cambridge University Press, Cambridge (2003) 2. Cheng, J., Shu, C.-W.: A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. J. Comput. Phys. 227, 1567–1596 (2007) 3. Cheng, J., Shu, C.-W.: A third order conservative Lagrangian type scheme on curvilinear meshes for the compressible Euler equations. Commun. Comput. Phys. 4, 1008–1024 (2008) 4. Don, W.S., Li, D.-M., Gao, Z., Wang, B.-S.: A characteristic-wise alternative WENO-Z finite difference scheme for solving the compressible multicomponent non-reactive flows in the overestimated quasi-conservative form. J. Sci. Comput. 82, 27 (2020) 5. Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numer. 25, 567–679 (2016) 6. Garg, N.K., Kurganov, A., Liu, Y.: Semi-discrete central-upwind Rankine-Hugoniot schemes for hyperbolic systems of conservation laws. J. Comput. Phys. 428, 110078 (2021) 7. Garg, N.K., Raghurama Rao, S.V., Sekhar, M.: Weak-strong hyperbolic splitting for simulating conservation laws. Int. J. Adv. Eng. Sci. Appl. Math. 7, 62–69 (2015) 8. Godlewski, E., Raviart, P.-A.: Numerical approximation of hyperbolic systems of conservation laws. In: Applied Mathematical Sciences, vol. 118. Springer-Verlag, New York (1996) 9. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2011) 10. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001) 11. Hesthaven, J.S.: Numerical Methods for Conservation Laws. From Analysis to Algorithms. SIAM, Philadelphia, PA (2018) 12. Jaisankar, S., Raghurama Rao, S.V.: A central Rankine-Hugoniot solver for hyperbolic conservation laws. J. Comput. Phys. 228, 770–798 (2009) 13. Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with Lax-Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35, A1137–A1160 (2013) 14. Kröner, D.: Numerical Schemes for Conservation Laws. John Wiley & Sons Ltd., Chichester (1997) 15. Kurganov, A.: Central schemes: a powerful black-box solver for nonlinear hyperbolic PDEs. In: Abgrall, R., Shu, C.-W. (eds). Handbook of Numerical Methods for Hyperbolic Problems, vol. 17, Handbook of Numerical Analysis, pp. 525–548. Elsevier/North-Holland, Amsterdam (2016) 16. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007) 17. Kurganov, A., Liu, Y., Zeitlin, V.: Numerical dissipation switch for two-dimensional central-upwind schemes. ESAIM: Math. Model. Num. Anal. 55, 713–734 (2021) 18. Kurganov, A., Liu, Y., Zeitlin, V.: Thermal versus isothermal rotating shallow water equations: comparison of dynamical processes by simulations with a novel well-balanced central-upwind scheme. Geophys. Astrophys. Fluid Dyn. 115, 125–154 (2021) 19. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001) 20. Kurganov, A., Prugger, M., Wu, T.: Second-order fully discrete central-upwind scheme for two-dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comput. 39, A947–A965 (2017) 21. Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differential Equations 18, 584–608 (2002) 22. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002) 23. Li, P., Don, W.S., Gao, Z.: High order well-balanced finite difference WENO interpolation-based schemes for shallow water equations. Computers & Fluids 201, 104476 (2020) 24. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25, 995–1017 (2003) 25. Liu, H.: A numerical study of the performance of alternative weighted ENO methods based on various numerical fluxes for conservation law. Appl. Math. Comput. 296, 182–197 (2017) 26. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for conservation laws, II: an alternative approach. J. Sci. Comput. 66, 598–624 (2016) 27. Liu, W., Cheng, J., Shu, C.-W.: High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations. J. Comput. Phys. 228, 8872–8891 (2009) 28. Panuelos, J., Wadsley, J., Kevlahan, N.: Low shear diffusion central schemes for particle methods. J. Comput. Phys. 414, 109454 (2020) 29. Raghurama Rao, S.V., Balakrishna, K.: An accurate shock capturing algorithm with a relaxation system for hyperbolic conservation laws. In: 16th AIAA Computational Fluid Dynamics Conference, AIAA 2003-4115, AIAA, Reston, VA (2003) 30. Schulz-Rinne, C.W.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24, 76–88 (1993) 31. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for twodimensional gas dynamics. SIAM J. Sci. Comput. 14, 1394 (1993) 32. Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186, 690–696 (2003) 33. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) 34. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989) 35. Wang, B.-S., Don, W.S., Garg, N.K., Kurganov, A.: Fifth-order A-WENO finite-difference schemes based on a new adaptive diffusion central numerical flux. SIAM J. Sci. Comput. 42, A3932–A3956 (2020) 36. Wang, B.-S., Li, P., Gao, Z., Don, W.S.: An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. J. Comput. Phys. 374, 469–477 (2018) 37. Woodward, P., Colella, P.: The numerical solution of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1988) 38. Zheng, Y.: Systems of Conservation Laws. Two-Dimensional Riemann Problems. In: Brezis, H. (ed). Progress in Nonlinear Differential Equations and Their Applications, vol. 38, Birkhäuser Boston, Inc., Boston, MA (2001) |